Renewable Energy for Sustainable Growth Assessment. Группа авторов
Contescu, C.I.; Adhikari, S.P.; Gallego, N.C.; Evans, N.D.; Biss, B.E. Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass. C J. Carbon Res. 2018. 4; 51.
7. Desai, B.G. CO2 emissions—Drivers across time and countries. Curr. Sci. 2018. 115; 386–387.
8. Hosseini SE, Wahid MA. Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 2013. 19; 454–62.
9. Hosseini SE, Wahid MA. Necessity of biodiesel utilization as a source of renewable energy in Malaysia. Renew Sustain Energy Rev 2012. 16; 5732-40.
10. Ravindranath N H, Hall DO. Biomass energy and environment. Oxford: Oxford University Press; 1995.
11. Williams, TO, Fernandez-Rivera, S, Kelley, T.G. The influence of socio-economic factors on the availability and utilization of crop residues as animal feeds. In: Renard, C. editor. Crop residues in sustainable mixed crop/livestock farming systems. CAB International and ICRISAT. (http://ilri.org/InfoServ/Webpub/fulldocs/CropResidues/chap%202.htm); 1997.
12. Kılkı¸ S, Krajacic G., Duic N., Rosen, M.A., Al-Nimr M.A. Advancements in sustainable development of energy, water and environment systems. Energy Convers. Manag. 2018. 176; 164–183.
13. Soltero, V.M.; Chacartegui, R.; Ortiz, C.; Velázquez, R. Potential of biomass district heating systems in rural areas. Energy 2018. 156; 132–143.
14. Williams, O.; Taylor, S.; Lester, E.; Kingman, S.; Giddings, D.; Eastwick, C. Applicability of mechanical tests for biomass pellet characterization for bioenergy applications. Materials. 2018. 11; 1329.
15. Lee, Y.; Park, J.; Ryu, C.; Gang, K.S.; Yang, W.; Park, Y.K.; Jung, J.; Hyun, S. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Biores. Technol. 2013. 148; 196–201.
16. Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S. A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 2011. 15; 2262-89.
17. Demirbas A. Combustion of biomass. Energy Sources Part A: Recover Util Environ Eff 2007. 29; 549-61.
18. Williams A, Jones J, Ma L, Pourkashanian M. Pollutants from the combustion of solid biomass fuels. Prog Energy Combus Sci 2012. 38;113e137.
19. https://worldbioenergy.org/uploads/191129%20WBA%20GBS%202019_LQ.pdf.
20. Johansson T. Increment and biomass in 26- to 91-year-old European aspen and some practical implications. Biomass Bioenergy 2002. 23; 245–55.
21. Perea-Moreno, A.-J.; García-Cruz, A.; Novas, N.; Manzano-Agugliaro, F. Rooftop analysis for solar flat plate collector assessment to achieving sustainability energy. J. Clean Prod. 2017, 148, 545–554.
22. Hoel, M., The rise and fall of bioenergy. Journal of Environment Economics and Management, 2020, 101; 102314.
23. Perea-Moreno, A.-J.; Aguilera-Ureña, M.-J.; Manzano-Agugliaro, F. Fuel properties of avocado stone. Fuel 2016, 186, 358–364.
24. Lu, C.; Li, W. A comprehensive city-level GHGs inventory accounting quantitative estimation with an empirical case of Baoding. Sci. Total Environ. 2018. 651; 601–613.
25. Perea-Moreno, M.-A.; Hernandez-Escobedo, Q.; Perea-Moreno, A.-J. Renewable Energy in Urban Areas: Worldwide Research Trends. Energies 2018. 11; 577.
26. Haykırı-Açma H. Combustion characteristics of different biomass materials. Energy Convers Manag 2003.44;155–62.
27. Demirbaş A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 2001.42; 1357–78.
28. Perea-Moreno, A.-J.; Perea-Moreno, M.-A.; Dorado, M.P.; Manzano-Agugliaro, F. Mango stone properties as biofuel and its potential for reducing CO2 emissions. J. Clean Prod. 2018. 190; 53–62.
29. Perea-Moreno, A.-J.; Perea-Moreno, M.-A.; Hernandez-Escobedo, Q.; Manzano-Agugliaro, F. Towards forest sustainability in Mediterranean Countries using biomass as fuel for heating. J. Clean Prod. 2017. 156; 624-634.
30. Perea-Moreno, M.A.; Manzano-Agugliaro, F.; Hernandez-Escobedo, Q.; Perea-Moreno, A.J. Peanut Shell for Energy: Properties and Its Potential to Respect the Environment. Sustainability 2018. 10; 3254.
31. Shah, M.A.; Khan, M.N.S.; Kumar, V. Biomass residue characterization for their potential application as biofuels. J. Therm. Anal. Calorim. 2018. 134; 2137-2145.
32. Wang, L.; Jing, Z.X.; Zheng, J.H.; Wu, Q.H.; Wei, F. Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals. Energy 2018.158; 607-622.
33. Perea-Moreno, M.A.; Manzano-Agugliaro, F.; Perea-Moreno, A.J. Sustainable energy based on sunflower seed husk boiler for residential buildings. Sustainability 2018. 10; 3407.
34. Nzotcha, U.; Kenfack, J. Contribution of the wood-processing industry for sustainable power generation: Viability of biomass-fuelled cogeneration in sub-saharan africa. Biomass Bioenergy 2019. 120; 324–331.
35. https://worldbioenergy.org/uploads/191129%20WBA%20GBS%202019_HQ.pdf.
36. Bhattacharyya SC. Energy access problem of the poor in India: is rural electrification a remedy? Energy Policy 2006. 34; 3387–97.
37. Kishore VVN, Bhandari PM, Gupta P. Biomass energy technologies for rural infrastructure and village power—opportunities and challenges in the context of global climate change concerns. Energy Policy 2004. 32; 801–10.
38. Li, Y.; Rezgui, Y.; Zhu, H. District heating and cooling optimization and enhancement— towards integration of renewables, storage and smart grid. Renew. Sustain. Energy Rev. 2017. 72; 281–294.
39. Rather, M.A.; Khan, N.S.; Gupta, R. Production of solid biofuel from macrophyte Potamogeton lucens. Eng. Sci. Technol. 2017. 20; 168–174.
40. Demirbas, M.F.; Balat, M.; Balat, H. Potential contribution of biomass to the sustainable energy development. Energy Convers. Manag. 2009. 50; 1746–1760.
41. Lebaka, V. Potential bioresources as future sources of biofuels production: An Overview, in: Gupta, V., Tuohy, M.G. (eds.), Biofuel Technol. Springer, Berlin, 2013. 223-258.
42. Chum, H., Faaij, A., Moreira, J., Berndes, G., Dhamija, P., Dong, H., Gabrielle, B., Goss Eng, A., Lucht, W., Mapako, M., Masera Cerutti, O., McIntyre, T., Minowa, T., Pingoud, K.,. Bioenergy, in: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., von Stechow, C. (eds.), IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge. 2011.
43. Kaltschmitt, M. Renewable energy from biomass, Introduction, in: Kaltschmitt, M., Themelis, N.J., Bronicki, L.Y., Söder, L., Vega, L.A. (eds.), Renewable Energy Systems. Springer, New York. 2013.
44. Tkemaladze, G.S., Makhashvili, K.A. Climate changes and photosynthesis. Ann. Agrar. Sci. 2016. 14(2), 119-126.
45. Molino, A., Chianese, S., Musmarra, D.Biomass gasification technology: the state of the art overview. J. Energy Chem. 25(1), 2016. 10-25.
46. Jacobsson, S., Johnson, A., The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy. 2000. 28(9); 625-640.
47. WBA Global bioenergy statistics, Summary Report 2018. World Bioenergy Association, www.worldenergy.org.