Polar Organometallic Reagents. Группа авторов

Polar Organometallic Reagents - Группа авторов


Скачать книгу
hinted at by the isolation of aryl argentates such as the crystalline dimer of [2‐(i‐Pr)2NC(O)‐C6H4]2AgLi(THF) 193 (Figure 1.32), the preliminary characterization of which points to further avenues of investigation in this area.

Schematic illustration of molecular structure of the dimer of2AgLi(THF) 193.

      Source: Adapted from Tezuka et al. [245].

Schematic illustration of lithium argentate 179 shows good functional group tolerance when making sulfides while the oxidative inertness of silver avoids biaryl production when making azo compounds.

      1 1 Schlosser, M. (2005). Angew. Chem. Int. Ed. 44: 376–393.

      2 2 Boudier, A., Bromm, L.O., Lotz, M., and Knochel, P. (2000). Angew. Chem. Int. Ed. 39: 4414–4435.

      3 3 Knochel, P. and Jones, P. (1998). Organozinc Reagents. Oxford University Press.

      4 4 Gschwend, H.W. and Rodriguez, H.R. (1979). Org. React. 26: 1–360.

      5 5 Beak, P. and Snieckus, V. (1982). Acc. Chem. Res. 15: 306–312.

      6 6 Snieckus, V. (1990). Chem. Rev. 90: 879–933.

      7 7 Gant, T.G. and Meyers, A.I. (1994). Tetrahedron 50: 2297–2360.

      8 8 Schlosser, M., (2002). Organometallics in Synthesis, 2nd ed. (Ed.: M. Schlosser), Chapter 1. New York: Wiley.

      9 9 Clayden, J. (2002). Organolithiums: Selectivity for Synthesis. Oxford: Pergamon.

      10 10 Gilman, H. and Bebb, R.L. (1939). J. Am. Chem. Soc. 61: 109–112.

      11 11 Wittig, G., Pieper, G., and Fuhrmann, G. (1940). Ber. Dtsch. Chem. Ges. B 73: 1193–1197.

      12 12 Upton, C. and Beak, P. (1975). J. Org. Chem. 40: 1094–1098.

      13 13 Krizan, T. D., Martin, J. C. (1983). J. Am. Chem. Soc. 105, 6155–6157.

      14 14 Caron, S., Hawkins, J. M. (1998). J. Org. Chem. 63, 2054–2055.

      15 15 Wheatley, A.E.H. (2003). Eur. J. Inorg. Chem.: 3291–3303.

      16 16 Clayden, J., Davies, R.P., Hendy, M.A. et al. (2001). Angew. Chem. Int. Ed. 40: 1238–1240.

      17 17 Clayden, J., Frampton, C.S., McCarthy, C., and Westlund, N. (1999). Tetrahedron 55: 14161–14184.

      18 18 Beak, P., Kerrick, S.T., and Gallagher, D.J. (1993). J. Am. Chem. Soc. 115: 10628–10636.

      19 19 Bowles, P., Clayden, J., Helliwell, M. et al. (1997). J. Chem. Soc., Perkin Trans. 1: 2607–2616.

      20 20 Armstrong, D.R., Boss, S.R., Clayden, J. et al. (2004). Angew. Chem. Int. Ed. 43: 2135–2138.

      21 21 Wheatley, A.E.H., Clayden, J., Hillier, I.H. et al. (2012). Beilstein J. Org. Chem. 8: 50–60.

      22 22 Armstrong, D.R., Clayden, J., Haigh, R. et al. (2003). Chem. Commun.: 1694–1695.

      23 23 Clayden, J., Stimson, C.C., Keenan, M., and Wheatley, A.E.H. (2004). Chem. Commun.: 228–229.

      24 24 Campbell Smith, A., Donnard, M., Haywood, J. et al. (2011). Chem. Eur. J. 17: 8078–8084.

      25 25 Fries, K. and Finck, G. (1908). Chem. Ber. 41: 4271–4284.

      26 26 MacNeil, S.L., Wilson, B.J., and Snieckus, V. (2006). Org. Lett. 8: 1133–1136.

      27 27 Singh, K.J. and Collum, D.B. (2006). J. Am. Chem. Soc. 128: 13753–13760.

      28 28 Jastrzebski, J.T.B.H., Arink, A.M., Kleijn, H. et al. (2013). J. Am. Chem. Soc. 135: 13371–13378.

      29 29 Eaton, P.E., Lee, C.‐H., and Xiong, Y. (1989). J. Am. Chem. Soc. 111: 8016–8018.

      30 30 Kondo, Y., Yoshida, A., and Sakamoto, T. (1996). J. Chem. Soc., Perkin Trans. 1: 1331–2332.

      31 31 Shilai,


Скачать книгу