Automática y Robótica en Latinoamérica. Alexander Martínez

Automática y Robótica en Latinoamérica - Alexander Martínez


Скачать книгу
la Industria 4.0, de acuerdo con las pautas del Modelo de Arquitectura de Referencia para la Industria 4.0 (RAMI 4.0) [15]; otro se dedica al diseño y la implementación de una herramienta para tareas colaborativas entre humanos y robots que, desde la mirada de Industria 4.0, se denominan robots colaborativos o COBOTS [16]; y un tercero se orienta al aporte a la solución del problema de secuenciación de tareas robóticas (RTSP por sus siglas en inglés) para un robot bimanual, ya que este problema había sido estudiado por la comunidad robótica, pero solo para manipuladores de un solo brazo [17]. Por su parte, como aporte a la industria de la construcción, la Universidad Tecnológica de Panamá (Panamá) presenta un estudio [18] cuyo objetivo es proponer un modelo del comportamiento térmico de un edificio pasivo que está ventilado simplemente por ventilación natural, el cual es necesario para controlar posteriormente el confort térmico del ambiente interior a través de las aberturas de ventilación natural y persianas del edificio.

      Otro campo de aplicación que ha tenido un gran auge en los últimos años es el de los vehículos autónomos, donde la cooperación entre la Universidad de Texas A&M (EE.UU.) y la Universidad Autónoma de Coahuila (México) ha dado como resultado un diseño conceptual y un análisis de simulación de un sistema aéreo modular, denominado MAS [19], diseñado con el propósito de realizar vuelo independiente y cooperativo con o sin carga útil; las propiedades de modularidad permiten que el sistema se adapte a diferentes tareas agregando o quitando módulos a una configuración modular. Además, en la Universidad de Texas A&M, se ha implementado una Red Neuronal Profunda (DNN) para distinguir gestos particulares realizados con las manos, así como también el movimiento hecho por el brazo del usuario, con el propósito de accionar actividades determinadas en un Sistema Aéreo No Tripulado (UAS) [20].

      Por su parte, en este mismo campo de los vehículos autónomos aéreos, la Pontificia Universidad Javeriana (Colombia) [21] ha desarrollado un esquema de cooperación entre vehículos aéreos no tripulados (UAV), en el que se utiliza la técnica de Control por Modos Deslizantes para garantizar que el conjunto de robots sea capaz de seguir una trayectoria definida como referencia, garantizando la navegación libre de colisiones entre dichos vehículos autónomos. Respecto a otro tipo de vehículos autónomos, la Universidad Tecnológica de Panamá (Panamá) ha mostrado cómo aprovechar la resolución de la redundancia cinemática por medio de un Algoritmo Genético Multi-objetivo para la generación de la trayectoria de un Vehículo Submarino Manipulador (Underwater Vehicle Manipulator System - UVMS) [22].

      Sumado a lo anterior, se han obtenido desarrollos y avances de corte académico o en algunos casos teórico, necesarios en el camino hacia futuras aplicaciones prácticas. Vale la pena comentar que, en algunos de los casos mencionados a continuación, ha sido muy valiosa la cooperación entre diferentes instituciones de educación superior, resaltando de esta manera la importancia del trabajo en redes académicas. Por ejemplo, la Universidad Estatal de Santa Catarina (Brasil) en cooperación con la Universidad Federal de Santa Catarina (Brasil), desarrolló una formulación robusta para la síntesis óptima de un mecanismo de cuatro barras generador de trayectoria [23]; y en cooperación con la Universidad Comunitaria de la Región de Chapecó (Brasil), obtuvo un método de optimización gráfica que determina la orientación ideal de un robot paralelo, con el fin de maximizar la rotación de su plataforma alrededor de un eje [24]. Adicionalmente, como parte de las labores de cooperación entre la Universidad Autónoma de Coahuila (México) y la Universidad de Texas A&M (EE.UU.) se presenta el análisis de fuerza estática de una rueda HeIse RSRR [25], que consiste en un mecanismo de dos grados de libertad que puede transformar una rueda circular en una rueda con múltiples extremidades.

      También se han desarrollado algunos sistemas y prototipos para ser usados en la enseñanza del control. Al respecto, se puede citar el diseño y el control de un prototipo de bajo costo de un sistema Ball and Plate [28] como herramienta de recursos de aprendizaje, y el modelado y control de una grúa didáctica bi-riel [29]; realizados en la Universidad Pedagógica y Tecnológica de Colombia (Colombia). En esta misma línea, en la Universidad del Cauca (Colombia) se realizó el modelo dinámico y el control de una bicicleta robótica [27]; y en la Universidad Nacional de Colombia (Colombia) se desarrolló una interfaz de usuario inmersiva que, utilizando realidad aumentada, permite programar trayectorias para el robot ABB IRB 140, mediante el uso de un marcador cúbico y retroalimentación de información útil al usuario a través del dispositivo THC VIVE [26].

      Teniendo en cuenta este panorama, en la Sección I se presentan algunos artículos cortos sobre trabajos que han sido desarrollados en distintas universidades latinoamericanas, con aplicaciones de la automática y la robótica en la agricultura, la educación o la industria. Luego, en la Sección II, en el formato de resumen extendido, se presentan algunos resultados preliminares de trabajos que, en el momento de su presentación en el congreso, se encontraban en desarrollo y que muestran algunas posibles aplicaciones en la industria y en el campo de la salud humana.

      Referencias

      [1] R. Villalpando-Hernandez, C. Vargas-Rosales, R. Diaz-M, L. Espinoza, and A. Martínez, “CNut Gathering Robot. Design, Implementation and Mathematical Characterization”, in Advances in Automation and Robotics Research (vol. 112), A. Martinez, H. A. Moreno, I. G. Carrera, A. Campos and J. Baca, Eds. Zurich, Switzerland: Springer, 2020, pp. 51–63.

      [2] W. Marín, J. Colorado, and I. M. Bernal, “Computer Vision for Recognition of Fruit Maturity in Amazonian Palms Using an UAV”, in Advances in Automation and Robotics Research (vol. 112), A. Martinez, H. A. Moreno, I. G. Carrera, A. Campos and J. Baca, Eds. Zurich, Switzerland: Springer, 2020, pp. 31–39.

      [3] H. J. Guio Carrillo, and A. L. Villamizar Fuentes, “Application of the Watershed Segmentation Method in the Separation and Identification of Individual Leaves in Potato Crops”, in Advances in Automation and Robotics Research (vol. 112), A. Martinez, H. A. Moreno, I. G. Carrera, A. Campos and J. Baca, Eds. Zurich, Switzerland: Springer, 2020, pp. 172–184.

      [4] D. Palomino-Suarez, and A. Pérez-Ruiz, “Towards Automatic UAV Path Planning in Agriculture Oversight Activities”, in Advances in Automation and Robotics Research (vol. 112), A. Martinez, H. A. Moreno, I. G. Carrera, A. Campos and J. Baca, Eds. Zurich, Switzerland: Springer, 2020, pp. 22–30.

      [5] R. Villalpando-Hernandez et al., “Design, Implementation and Characterization of a Low-Cost Stair-Climbing and Obstacle Dodging Robot for Emergency Situations”, in Advances in Automation and Robotics Research (vol. 112), A. Martinez, H. A. Moreno, I. G. Carrera, A. Campos and J. Baca, Eds. Zurich, Switzerland: Springer, 2020, pp. 236–247.

      [6] I. Chang, A. García, and E. García, “Design of an Inclusive Early Warning System. Case of Basin of Pacora River, Panama”, in Advances in Automation and Robotics Research (vol. 112), A. Martinez, H. A. Moreno, I. G. Carrera, A. Campos and J. Baca, Eds. Zurich, Switzerland: Springer, 2020, pp. 224–235.

      [7] J. Martinez, J. Baca, L. R. Garcia Carrillo, and S. A. King, “Overwatch-M System: Implementation of Bayesian Statistics for Assessment of Sensorimotor Control”, in Advances in Automation and Robotics Research (vol. 112), A. Martinez, H. A. Moreno, I. G. Carrera, A. Campos and J. Baca, Eds. Zurich, Switzerland: Springer, 2020, pp. 79–91.

      [8] J. Baca et al., “Modular multi-motor exercise system for space exploration,” SN Appl. Sci., vol. 2, no. 4, art. 518, 2020. doi: 10.1007/s42452-020-2315-1.

      [9] M. Martinez, J. Baca, J. Martinez, and M. Myers, “Wearable Tracking Modules Based on Magnetic Fields”, in Advances in Automation and Robotics Research (vol. 112), A. Martinez, H. A. Moreno, I. G. Carrera, A. Campos and J. Baca, Eds. Zurich, Switzerland: Springer, 2020, pp. 214–223.

      [10] I. Carrera, H. Moreno, I. Hernández, and E. Camporredondo, “Kinematic Analysis of a Lower Limb Rehabilitation Robot”, in Advances in Automation and Robotics Research (vol. 112), A. Martinez, H. A. Moreno, I. G. Carrera, A. Campos and J. Baca, Eds. Zurich, Switzerland: Springer, 2020, pp. 72–78.

      [11] J. Sanz-Moreno et al., “mHealth System for the Early Detection of Infectious Diseases Using Biomedical Signals”, in Advances in Automation and Robotics Research (vol. 112), A. Martinez, H. A. Moreno, I. G. Carrera, A. Campos and J. Baca,


Скачать книгу