Geophysical Monitoring for Geologic Carbon Storage. Группа авторов
methods are well suited for monitoring the effectiveness of the geological storage of carbon dioxide. The application to carbon sequestration is still relatively new, but approaches such as Interferometric Synthetic Aperture Radar appear promising even at sites subject to periodic snow cover. Enhancements, such as artificial radar reflectors, may be required for certain difficult terrains such as farmed fields with intermittent snow cover. Even in these difficult areas, it appears possible to monitor ground deformation with the accuracy of 0.5 cm. In favorable regions such as desert regions with little movable sand, the accuracy can be of the order of a few millimeters. In an application at In Salah, Algeria, InSAR appears to be sensitive to focused flow in a narrow higher permeability damage zone, indicating deviations from pure reservoir flow. Other geodetic techniques, such as tilt meters, the Global Positioning System (GPS), and laser ranging (LiDAR) are also possible. Some methods, such as precision bathymetry and time‐lapse seismic strain measurements (Rickett et al., 2007) are applicable to storage in deformable offshore reservoirs.
ACKNOWLEDGMENTS
This work at Lawrence Berkeley National Laboratory was supported by the GEOSEQ project for the Assistant Secretary for Fossil Energy, Office of Coal and Power Systems, through the National Energy Technology Laboratory of the U. S. Department of Energy under contract DE‐AC02‐05‐CH11231. We would like to thank the Canadian Space Agency for providing RADARSAT‐2 data. The Petroleum Technology Research Centre provided logistical support for this work as well as project information. SaskPower provided access to the Aquistore site.
REFERENCES
1 Aki, K., & Richards, P. G. (1980). Quantitative seismology. W. H. Freeman and Company.
2 Bissell, R. C., Vasco, D. W., Atbi, M., Hamdani, M., Okwelegbe, M., & Goldwater, M. H. (2011). A full field simulation of In Salah Gas production and CO2 storage project using coupled geo‐mechanical and thermal fluid flow simulator. Energy Procedia, 4, 3290–3297.
3 Chawah, P., Chery, J. Boudin, F., Cattoen, M., Seat, H. C., Plantier, G., Lizion, F., et al. (2015). A simple pendulum borehole tiltmeter based on a triaxial optical‐fibre displacement sensor. Geophysical Journal International, 203, 1026–1038. https://doi.org/10.1093/gji/ggv358
4 Davis, P. M. (1983). Surface deformation associated with a dipping hydrofracture. Journal of Geophysical Research, 88, 5826–5834.
5 Eitel, J. J. H., Hofle, B., Vierling, L. A., Abellan, A., Asner, G. P., Deems, J. S, Glennie, C. L., et al. (2016). Beyond 3‐D: The new spectrum of lidar applications for Earth and ecological sciences. Remote Sensing of Environment, 186, 372–392.
6 Falorni, G, Hsiao, V., Iannaconne, J., Morgan, J., & Michaud, J.‐S. (2014). InSAR monitoring of ground deformation at the Illinois Basin Decatur Project. In Carbon dioxide capture for storage in deep geological formations, Vol. 4. CPL Press.
7 Ferretti, A. (2014). Satellite InSAR data: Reservoir monitoring from space. EAGE Publications.
8 Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F. & Rucci, A. (2011). A new algorithm for processing interferometric data‐stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3460–3470.
9 Ferretti, A., Monti‐Guarnieri A., Prati, C., Rocca, F., & Massonnet, D. (2007a). InSAR principles: Guidelines for SAR interferometry processing and interpretation. ESA Publications, TM‐19. Available at: http://www.esa.int/About_Us/ESA_Publications
10 Ferretti, A., Prati, C. & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202–2212.
11 Ferretti, A., Prati, C. & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20.
12 Finley, R. J., Frailey, S. M., Leetaru, H. E., Senel, O., Coueslan, M. L., & Marsteller, S. (2013). Early operational experience at a one‐million tonne CCS demonstration project, Decatur, Illinois. Energy Procedia, 37, 6149–6155.
13 Finley, R. J., Greenberg, S. D., Frailey, S. M., Krapac, I. G., Leetaru, H. E., & Marsteller, S. (2011). The path to a successful one‐million tonne demonstration of geological sequestration: Characterization, cooperation, and collaboration. Energy Procedia, 4, 4770–4776.
14 Gibson‐Poole, C. M., & Raikes, S. (2010). Enhanced understanding of CO2 storage at Krechba from 3D seismic. Proceedings of the 9th Annual Conference on Carbon Capture and Sequestration, Pittsburgh, PA, May 10–13, 2010.
15 Hisz, D. B., Murdoch, J. C., & Germanovich, L. N. (2013). A portable extensometer and tiltmeter for characterizing aquifers. Water Resources Research, 49, 7900–7910. https://doi.org/10.1002.wrcr.20500
16 Joyce, K. E., Samsonov, S. V., Levick, S. R., Engelbrecht, J. & Belliss, S. (2014). Mapping and monitoring geological hazards using optical, LiDAR, and synthetic aperture RADAR image data. Natural Hazards, 73, 137–163.
17 Kaven, J. O., Hickman, S. H., McGarr, A. F., Walter, S., & Ellsworth, W. L. (2014). Seismic monitoring at the Decatur, IL, CO2 sequestration demonstration site. Energy Procedia, 63, 4264–4272.
18 Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its applications to changes in the Earth's surface. Reviews of Geophysics, 36, 441–500.
19 Mathieson, A. Midgley, J., Dodds, K., Wright, I., Ringrose, P., & Saoula, N. (2010). CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. The Leading Edge, 29, 216–222.
20 Mogi, K. (1958). Relations between the eruptions of various volcanoes and the deformation of the ground surfaces above them. University of Tokyo Earthquake Research Institute Bulletin, 36, 99–134.
21 Moreau, F., & Dauteuil, O. (2013). Geodetic tools for hydrogeological surveys: 3D‐displacements above a fractured aquifer from GPS time series. Engineering Geology, 152, 1–9.
22 Norford, B., Haidl, R., Bezys, F. M., Cecile, M., McCabe, H., & Paterson, D. (1994). Middle Ordovician to Lower Devonian strata of the western Canada sedimentary basin. In G. Mossop & I. Shetson (comp.), Geological atlas of the western Canada sedimentary basin (pp. 109–127). Canadian Society of Petroleum Geologists, Calgary, Alberta and Alberta Research Council, Edmonton, Alberta.
23 Rickett, J., Duranti, L., Hudson, T., Regel, B., & Hodgson, N. (2007). 4D time strain and the seismic signature of geomechanical compaction at Genesis. The Leading Edge, 26, 644–647.
24 Ringrose, P. S., Mathieson, A. S., Wright, I. W., Selama, F., Hansen, O., Bissell, R., & Midgley, J. (2013). The In Salah CO2 storage project: Lessons learned and knowledge transfer. Energy Procedia, 37, 6226–6236.
25 Rosen, P., Hensley, S., Joughin, I., Li, F., Madsen, S. N., Rodriguez, E., & Goldstein, R. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333–382.
26 Rucci, A., Vasco, D. W., & Novali, F. (2010). Fluid pressure arrival‐time tomography: Estimation and assessment in the presence of inequality constraints with an application to production in the Krechba field, Algeria. Geophysics, 75, O39–O55.
27 Rucci, A., Vasco, D. W., & Novali, F. (2013). Monitoring the geologic storage of carbon dioxide using multicomponent SAR interferometry. Geophysical Journal International, 193(1), 197–208.
28 Samsonov, S., & d'Oreye, N. (2012). Multidimensional time series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province. Geophysical Journal International, 191, 1095–1108. https://doi.org/10.1111/j.1365‐246X.2012.05669.x
29 Samsonov, S., Czarnogorska, M., & White, D. (2015). Satellite interferometry for high‐precision detection of ground