Genome Editing in Drug Discovery. Группа авторов

Genome Editing in Drug Discovery - Группа авторов


Скачать книгу
Cell 139: 945–956.

      68 Hampton, H.G., Watson, B.N.J., and Fineran, P.C. (2020). The arms race between bacteria and their phage foes. Nature 577: 327–336.

      69 Han, W., Li, Y., Deng, L. et al. (2017). A Type III‐B CRISPR‐Cas effector complex mediating massive target DNA destruction. Nucleic Acids Res. 45: 1983–1993.

      70 Harrington, L.B., Paez‐Espino, D., Staahl, B.T. et al. (2017). A thermostable Cas9 with increased lifetime in human plasma. Nat. Commun. 8: 1424.

      71 Harrington, L.B., Burstein, D., Chen, J.S. et al. (2018). Programmed DNA destruction by miniature CRISPR‐Cas14 enzymes. Science 362: 839–842.

      72 Hatoum‐Aslan, A., Maniv, I., Samai, P., and Marraffini, L.A. (2014). Genetic characterization of antiplasmid immunity through a type III‐A CRISPR‐Cas system. J. Bacteriol. 196: 310–317.

      73 Haurwitz, R.E., Jinek, M., Wiedenheft, B. et al. (2010). Sequence‐ and structure‐specific RNA processing by a CRISPR endonuclease. Science 329: 1355–1358.

      74 Hayes, R.P., Xiao, Y., Ding, F. et al. (2016). Structural basis for promiscuous PAM recognition in Type I‐E Cascade from E. coli. Nature 530: 499–503.

      75 Heler, R., Samai, P., Modell, J.W. et al. (2015). Cas9 specifies functional viral targets during CRISPR‐Cas adaptation. Nature 519: 199–202.

      76 Hille, F., Richter, H., Wong, S.P. et al. (2018). The Biology of CRISPR‐Cas: backward and forward. Cell 172: 1239–1259.

      77 Hirano, H., Gootenberg, J.S., Horii, T. et al. (2016). Structure and engineering of Francisella novicida Cas9. Cell 164: 950–961.

      78 Horvath, P., Romero, D.A., Coute‐Monvoisin, A.C. et al. (2008). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190: 1401–1412.

      79 Hou, Z., Zhang, Y., Propson, N.E. et al. (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. U. S. A. 110: 15644–15649.

      80 Hu, Z., Wang, S., Zhang, C. et al. (2020). A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol. 18: e3000686.

      81 Huo, Y., Nam, K.H., Ding, F. et al. (2014). Structures of CRISPR Cas3 offer mechanistic insights into Cascade‐activated DNA unwinding and degradation. Nat. Struct. Mol. Biol. 21: 771–777.

      82 Hwang, W.Y., Fu, Y., Reyon, D. et al. (2013). Efficient genome editing in zebrafish using a CRISPR‐Cas system. Nat. Biotechnol. 31: 227–229.

      83 Hynes, A.P., Villion, M., and Moineau, S. (2014). Adaptation in bacterial CRISPR‐Cas immunity can be driven by defective phages. Nat. Commun. 5: 1–6.

      84 Ishino, Y., Shinagawa, H., Makino, K. et al. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169: 5429–5433.

      85 Ivančić‐Baće, I., Cass, S.D., Wearne, S.J., and Bolt, E.L. (2015). Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR‐Cas immunity. Nucleic Acids Res. 43: 10821–10830.

      86 Jansen, R., Van Embden, J.D.A., Gaastra, W., and Schouls, L.M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43: 1565–1575.

      87 Jeon, Y., Choi, Y.H., Jang, Y. et al. (2018). Direct observation of DNA target searching and cleavage by CRISPR‐Cas12a. Nat. Commun. 9: 2777.

      88 Jiang, F., Taylor, D.W., Chen, J.S. et al. (2016a). Structures of a CRISPR‐Cas9 R‐loop complex primed for DNA cleavage. Science 351: 867–871.

      89 Jiang, W., Samai, P., and Marraffini, L.A. (2016b). Degradation of phage transcripts by CRISPR‐associated RNases enables Type III CRISPR‐Cas Immunity. Cell 164: 710–721.

      90 Jinek, M., Chylinski, K., Fonfara, I. et al. (2012). A programmable dual‐RNA‐guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.

      91 Jinek, M., East, A., Cheng, A. et al. (2013). RNA‐programmed genome editing in human cells. elife 2: e00471.

      92 Jore, M.M., Lundgren, M., Van Duijn, E. et al. (2011). Structural basis for CRISPR RNA‐guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18: 529–536.

      93 Jones, J.R.S.K., Hawkins, J.A., Johnson, N.V. et al. (2020). Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nat. Biotechnol. 39: 84–93.

      94 Karvelis, T., Gasiunas, G., Miksys, A. et al. (2013). crRNA and tracrRNA guide Cas9‐mediated DNA interference in streptococcus thermophilus. RNA Biol. 10: 841–851.

      95 Karvelis, T., Bigelyte, G., Young, J.K. et al. (2020). PAM recognition by miniature CRISPR‐Cas12f nucleases triggers programmable double‐stranded DNA target cleavage. Nucleic Acids Res. 48: 5016–5023.

      96 Kazlauskiene, M., Tamulaitis, G., Kostiuk, G. et al. (2016). Spatiotemporal control of Type III‐A CRISPR‐Cas Immunity: coupling DNA degradation with the target RNA recognition. Mol. Cell 62: 295–306.

      97 Kazlauskiene, M., Kostiuk, G., Venclovas, C. et al. (2017). A cyclic oligonucleotide signaling pathway in Type III CRISPR‐Cas systems. Science 357: 605–609.

      98 Kim, E., Koo, T., Park, S.W. et al. (2017). in vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8: 14500.

      99 Kim, S., Loeff, L., Colombo, S. et al. (2020). Selective loading and processing of prespacers for precise CRISPR adaptation. Nature 579: 141–145.

      100 Kiro, R., Shitrit, D., and Qimron, U. (2014). Efficient engineering of a bacteriophage genome using the type I‐E CRISPR‐Cas system. RNA Biol. 11: 42–44.

      101 Klein, M., Eslami‐Mossallam, B., Arroyo, D.G., and Depken, M. (2018). Hybridization kinetics explains CRISPR‐Cas off‐targeting rules. Cell Rep. 22: 1413–1423.

      102 Kleinstiver, B.P., Prew, M.S., Tsai, S.Q. et al. (2015). Engineered CRISPR‐Cas9 nucleases with altered PAM specificities. Nature 523: 481–485.

      103 Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. (2016a). High‐fidelity CRISPR‐Cas9 nucleases with no detectable genome‐wide off‐target effects. Nature 529: 490–495.

      104 Kleinstiver, B.P., Tsai, S.Q., Prew, M.S. et al. (2016b). Genome‐wide specificities of CRISPR‐Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34: 869–874.

      105 Kleinstiver, B.P., Sousa, A.A., Walton, R.T. et al. (2019). Engineered CRISPR‐Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37: 276–282.

      106 Klompe, S.E., Vo, P.L.H., Halpin‐Healy, T.S., and Sternberg, S.H. (2019). Transposon‐encoded CRISPR‐Cas systems direct RNA‐guided DNA integration. Nature 571: 219–225.

      107 Komor, A.C., Kim, Y.B., Packer, M.S. et al. (2016). Programmable editing of a target base in genomic DNA without double‐stranded DNA cleavage. Nature 533: 420–424.

      108 Konermann, S., Lotfy, P., Brideau, N.J. et al. (2018). Transcriptome engineering with RNA‐targeting Type VI‐D CRISPR effectors. Cell 173: 665–676. e14.

      109 Koonin, E.V. and Makarova, K.S. (2019). Origins and evolution of CRISPR‐Cas systems. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 374: 20180087.

      110 Kosicki, M., Tomberg, K., and Bradley, A. (2018). Repair of double‐strand breaks induced by CRISPR‐Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36: 765–771.

      111 Kunin, V., Sorek, R., and Hugenholtz, P. (2007). Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8: R61.

      112 Lee, H., Zhou, Y., Taylor, D.W., and Sashital, D.G. (2018). Cas4‐Dependent Prespacer Processing Ensures High‐Fidelity Programming of CRISPR Arrays. Mol. Cell 70: 48–59. e5.

      113 Lee, H., Dhingra, Y., and Sashital, D.G. (2019). The Cas4‐Cas1‐Cas2


Скачать книгу