Genome Editing in Drug Discovery. Группа авторов
Ptpn2 as a cancer immunotherapy target. Nature 547: 413–418.
51 Mans, R., Van Rossum, H.M., Wijsman, M. et al. (2015). CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 15.
52 Martin‐Laffon, J., Kuntz, M., and Ricroch, A.E. (2019). Worldwide CRISPR patent landscape shows strong geographical biases. Nat. Biotechnol. 37: 613–620.
53 Martufi, M., Good, R.B., Rapiteanu, R. et al. (2019). Single‐step, high‐efficiency CRISPR‐Cas9 genome editing in primary human disease‐derived fibroblasts. CRISPR J 2: 31–40.
54 Metzakopian, E., Strong, A., Iyer, V. et al. (2017). Enhancing the genome editing toolbox: genome wide CRISPR arrayed libraries. Sci. Rep. 7: 2244.
55 Mou, H., Smith, J.L., Peng, L. et al. (2017). CRISPR/Cas9‐mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol. 18: 108.
56 Munoz, D.M., Cassiani, P.J., Li, L. et al. (2016). CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false‐positive hits for highly amplified genomic regions. Cancer Discov. 6: 900–913.
57 Najm, F.J., Strand, C., Donovan, K.F. et al. (2018). Orthologous CRISPR‐Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36: 179–189.
58 Oughtred, R., Stark, C., Breitkreutz, B.J. et al. (2019). The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47: D529–D541.
59 Pattanayak, V., Lin, S., Guilinger, J.P. et al. (2013). High‐throughput profiling of off‐target DNA cleavage reveals RNA‐programmed Cas9 nuclease specificity. Nat. Biotechnol. 31: 839–843.
60 Pichler, F.B. and Turner, S.J. (2007). The power and pitfalls of outsourcing. Nat. Biotechnol. 25: 1093–1096.
61 Popp, M.W. and Maquat, L.E. (2016). Leveraging rules of nonsense‐mediated mRNA decay for genome engineering and personalized medicine. Cell 165: 1319–1322.
62 Qiu, P., Shandilya, H., D'alessio, J.M. et al. (2004). Mutation detection using Surveyor nuclease. BioTechniques 36: 702–707.
63 Ran, F.A., Cong, L., Yan, W.X. et al. (2015). in vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186–191.
64 Rosenbluh, J., Xu, H., Harrington, W. et al. (2017). Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nat. Commun. 8: 15403.
65 Safari, F., Zare, K., Negahdaripour, M. et al. (2019). CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci. 9: 36.
66 Sanson, K.R., Hanna, R.E., Hegde, M. et al. (2018). Optimized libraries for CRISPR‐Cas9 genetic screens with multiple modalities. Nat. Commun. 9: 5416.
67 Sanson, K.R., Deweirdt, P.C., Sangree, A.K. et al. (2020). Optimization of AsCas12a for combinatorial genetic screens in human cells. bioRxiv https://www.biorxiv.org/content/10.1101/747170v1.
68 Seki, A. and Rutz, S. (2018). Optimized RNP transfection for highly efficient CRISPR/Cas9‐mediated gene knockout in primary T cells. J. Exp. Med. 215: 985–997.
69 Sharpe, J.J. and Cooper, T.A. (2017). Unexpected consequences: exon skipping caused by CRISPR‐generated mutations. Genome Biol. 18: 109.
70 Shifrut, E., Carnevale, J., Tobin, V. et al. (2018). Genome‐wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175: 1958–1971. e15.
71 Slaymaker, I.M., Gao, L., Zetsche, B. et al. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science 351: 84–88.
72 Smits, A.H., Ziebell, F., Joberty, G. et al. (2019). Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods 16: 1087–1093.
73 Song, C.Q., Li, Y., Mou, H. et al. (2017). Genome‐wide CRISPR screen identifies regulators of mitogen‐activated protein kinase as suppressors of liver tumors in mice. Gastroenterology 152: 1161–1173. e1.
74 Strezoska, Z., Perkett, M.R., Chou, E.T. et al. (2017). High‐content analysis screening for cell cycle regulators using arrayed synthetic crRNA libraries. J. Biotechnol. 251: 189–200.
75 Tak, Y.E., Kleinstiver, B.P., Nunez, J.K. et al. (2017). Inducible and multiplex gene regulation using CRISPR‐Cpf1‐based transcription factors. Nat. Methods 14: 1163–1166.
76 Takeda, H., Kataoka, S., Nakayama, M. et al. (2019). CRISPR‐Cas9‐mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc. Natl. Acad. Sci. U. S. A. 116: 15635–15644.
77 Thomas, J.D., Polaski, J.T., Feng, Q. et al. (2020). RNA isoform screens uncover the essentiality and tumor‐suppressor activity of ultraconserved poison exons. Nat. Genet. 52: 84–94.
78 Tuladhar, R., Yeu, Y., Tyler Piazza, J. et al. (2019). CRISPR‐Cas9‐based mutagenesis frequently provokes on‐target mRNA misregulation. Nat. Commun. 10: 4056.
79 Tzelepis, K., Koike‐Yusa, H., De Braekeleer, E. et al. (2016). A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in Acute Myeloid Leukemia. Cell Rep. 17: 1193–1205.
80 Vakulskas, C.A., Dever, D.P., Rettig, G.R. et al. (2018). A high‐fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24: 1216–1224.
81 Van Der Meer, D., Barthorpe, S., Yang, W. et al. (2019). Cell Model Passports‐a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res. 47: D923–D929.
82 Wang, T., Birsoy, K., Hughes, N.W. et al. (2015). Identification and characterization of essential genes in the human genome. Science 350: 1096–1101.
83 Wei, J., Long, L., Zheng, W. et al. (2019). Targeting REGNASE‐1 programs long‐lived effector T cells for cancer therapy. Nature 576: 471–476.
84 Wienert, B., Wyman, S.K., Richardson, C.D. et al. (2019). Unbiased detection of CRISPR off‐targets in vivo using DISCOVER‐Seq. Science 364: 286–289.
85 Wiszniewska, J., Bi, W., Shaw, C. et al. (2014). Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur. J. Hum. Genet. 22: 79–87.
86 Wu, J. and Yin, H. (2019). Engineering guide RNA to reduce the off‐target effects of CRISPR. J. Genet. Genomics 46: 523–529.
87 Yau, E.H., Kummetha, I.R., Lichinchi, G. et al. (2017). Genome‐wide CRISPR screen for essential cell growth mediators in mutant KRAS colorectal cancers. Cancer Res. 77: 6330–6339.
88 Ye, L., Park, J.J., Dong, M.B. et al. (2019). in vivo CRISPR screening in CD8 T cells with AAV‐sleeping beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 37: 1302–1313.
89 Yeung, A.T.Y., Choi, Y.H., Lee, A.H.Y. et al. (2019). A genome‐wide knockout screen in human macrophages identified host factors modulating salmonella infection. MBio 10.
90 Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. (2015). Cpf1 is a single RNA‐guided endonuclease of a class 2 CRISPR‐Cas system. Cell 163: 759–771.
91 Zhang, F. (2019). Development of CRISPR‐Cas systems for genome editing and beyond. Q. Rev. Biophys. 52: 1–31.
92 Zhao, Y., Tyrishkin, K., Sjaarda, C. et al. (2019). A one‐step tRNA‐CRISPR system for genome‐wide genetic interaction mapping in mammalian cells. Sci. Rep. 9: 14499.
93 Zischewski, J., Fischer, R., and Bortesi, L. (2017). Detection of on‐target and off‐target mutations generated by CRISPR/Cas9 and other sequence‐specific nucleases. Biotechnol. Adv. 35: 95–104.
Конец ознакомительного фрагмента.
Текст предоставлен