Flexible Supercapacitors. Группа авторов

Flexible Supercapacitors - Группа авторов


Скачать книгу
Jiao, Y., Liu, Y., Yin, B. et al. (2014). Nano Energy 10: 90.

      70 70 Yu, M., Wang, W., Li, C. et al. (2014). Npg Asia Mater. 6: e129.

      71 71 Tang, K., Li, Y., Li, Y. et al. (2016). Electrochim. Acta 209: 709.

      72 72 Van Lam, D., Shim, H.C., Kim, J.H. et al. (2017). Small 13: 1702702.

      73 73 Yang, J., Yu, C., Fan, X. et al. (2016). Energy Environ. Sci. 9: 1299.

      74 74 Xiao, J., Wan, L., Yang, S. et al. (2014). Nano Lett. 14: 831.

      75 75 Shen, L., Wang, J., Xu, G. et al. (2015). Adv. Energy Mater. 5: 1400977.

      76 76 Yang, Y., Fei, H., Ruan, G. et al. (2014). Adv. Mater. 26: 8163.

      77 77 Su, C., Xiang, J., Wen, F. et al. (2016). Electrochim. Acta 212: 941.

      78 78 Ranaweera, C.K., Wang, Z., Alqurashi, E. et al. (2016). J. Mater. Chem. A 4: 9014.

      79 79 Das, H.T., Mahendraprabhu, K., Maiyalagan, T., and Elumalai, P. (2017). Sci. Rep. 7: 15342.

      80 80 Xia, H., Hong, C., Shi, X. et al. (2015). J. Mater. Chem. A 3: 1216.

      81 81 Wang, D.W., Li, F., Zhao, J. et al. (2009). ACS Nano 3: 1745.

      82 82 Shi, Y., Pan, L., Liu, B. et al. (2014). J. Mater. Chem. A 2: 6086.

      83 83 Davies, A., Audette, P., Farrow, B. et al. (2011). J. Phys. Chem. C 115: 17612.

      84 84 Laforgue, A. and Power, J. (2011). Sources 196: 559.

      85 85 Tang, P., Han, L., and Zhang, L. (2014). ACS Appl. Mater. Interfaces 6: 10506.

      86 86 Xu, P., Wei, B.Q., Cao, Z.Y. et al. (2015). ACS Nano 9: 6088.

      87 87 Hong, X., Kim, J., Shi, S.F. et al. (2014). Nat. Nanotechnol. 9: 682.

      88 88 Liu, Y., Lu, Q., Huang, Z. et al. (2018). J. Alloys Compd. 762: 301.

      89 89 Yu, D., Goh, K., Wang, H. et al. (2014). Nat. Nanotechnol. 9: 555.

      90 90 Wang, W., Liu, W.Y., Zeng, Y.X. et al. (2015). Adv. Mater. 27: 3572.

      91 91 Lu, X., Yu, M., Zhai, T. et al. (2013). Nano Lett. 13: 2628.

      92 92 Ruan, D., Lin, R., Jiang, K. et al. (2017). ACS Appl. Mater. Interfaces 9: 29699.

      93 93 Samuel, E., Joshi, B., Jo, H.S. et al. (2017). Chem. Eng. J. 328: 776.

      94 94 Zheng, L., Xu, Y., Jin, D., and Xie, Y. (2011). Chem. Asian J. 6: 1505.

      95 95 Singh, A. and Chandra, A. (2015). Sci. Rep. 5: 15551.

      96 96 Tang, Q.Q., Chen, M.M., Wang, L. et al. (2015). Sources 273: 654.

      97 97 Amitha, F.E., Reddy, A.L.M., and Ramaprabhu, S. (2009). J. Nanopart. Res. 11: 725.

      98 98 Zhai, T., Xie, S.L., Yu, M.H. et al. (2014). Nano Energy 8: 255.

      99 99 Liu, Y., Xiao, R., Qiu, Y. et al. (2016). Electrochim. Acta 213: 393.

      100 100 Yu, M., Han, Y., Cheng, X. et al. (2015). Adv. Mater. 27: 3085.

      101 101 Zhu, C., Yang, P., Chao, D. et al. (2015). Adv. Mater. 27: 4566.

      102 102 Shim, B.S., Chen, W., Doty, C. et al. (2008). Nano Lett. 8: 4151.

      103 103 Cherenack, K., Zysset, C., Kinkeldei, T. et al. (2010). Adv. Mater. 22: 5178.

      104 104 Laxminarayana, K. and Jalili, N. (2005). Text. Res. J. 75: 670.

      105 105 Marculescu, D., Marculescu, R., Zamora, N.H. et al. (2003). Proc. IEEE 91: 1995.

      106 106 Chen, Z., Ren, W., Gao, L. et al. (2011). Nat. Mater. 10: 424.

      107 107 Zheng, B.N., Huang, T.Q., Kou, L. et al. (2014). J. Mater. Chem. A 2: 9736.

      108 108 Wang, J., Luo, C., Mao, J. et al. (2015). ACS Appl. Mater. Interfaces 7: 11476.

      109 109 Yu, D., Goh, K., Zhang, Q. et al. (2014). Adv. Mater. 26: 6790.

      110 110 Senthilkumar, S.T. and Selvan, R.K. (2014). Phys. Chem. Chem. Phys. 16: 15692.

      111 111 Yu, N., Yin, H., Zhang, W. et al. (2016). Adv. Energy Mater. 6: 1501458.

      112 112 Yu, M., Cheng, X., Zeng, Y. et al. (2016). Angew. Chem. Int. Edit. 55: 6762.

      113 113 Zhang, Z., Xiao, F., and Wang, S. (2015). J. Mater. Chem. A 3: 11215.

      114 114 Xu, H.H., Hu, X.L., Sun, Y.M. et al. (2015). Nano Res. 8: 1148.

      115 115 Dong, X., Guo, Z., Song, Y. et al. (2014). Adv. Funct. Mater. 24: 3405.

      116 116 Wang, X., Liu, B., Liu, R. et al. (2014). Angew. Chem. Int. Edit. 53: 1849.

      117 117 Yu, Z., Moore, J., Calderon, J. et al. (2015). Small 11: 5289.

      118 118 Jin, H.Y., Zhou, L.M., Mak, C.L. et al. (2015). Nano Energy 11: 662.

      119 119 Su, F. and Miao, M. (2014). Nanotechnology 25: 135401.

      120 120 Cheng, X.L., Zhang, J., Ren, J. et al. (2016). J. Phys. Chem. C 120: 9685.

      121 121 Li, W., Torres, D., Díaz, R. et al. (2017). Nanogenerator‐based dual‐functional and self‐powered thin patch loudspeaker or microphone for flexible electronics. Nat Commun 8: 15310.

       La Li and Guozhen Shen

       State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Science, Beijing, 100083, China

      Stretchable supercapacitors (SCs) that possess both flexibility and stretchability in terms of mechanical property and easy integration in terms of whole electro circuit design have attracted plenty of interest because they fulfill the demands of wearable or skin‐attachable electronic devices on energy storage [1–5]. By couple with stretchable SCs, portable/ wearable devices could easily realize the special health monitor and chemical, physical, biological, etc. signal detection without impacting on the size, volume, mass of the wearable electronic [6–8]. Current stretchable SCs are composed of deformable substrate, electrode materials, and all‐solid‐state electrolyte, which are much simplified in comparison with traditional SCs that contain two other components: current collector and separator.

      The energy storage mechanism of stretchable SCs is similar to traditional SCs, which can be divided into pseudocapacitors and electrical double‐layer capacitors (EDLCs) according to the used electrode materials [9–12]. These two kinds of SCs have their merit and shortcoming, pseudocapacitors presented by the metal oxides, conductive polymers and nanocomposites possess the advantages of much higher capacitance owing to the reversible faradaic reactions at the electrode/electrolyte interface, for example, the theoretical‐capacitance value of two‐dimensional layered double hydroxide electrode materials is as high as 3000 F g−1, but suffer from poor cycling life, inferior rate capability and relatively low conductivity [13–17]. Porous carbon materials based EDLCs with benefits of ultra‐long cycling life, high power density, good chemical stability, non‐toxic and environmental friendliness are of importance for SCs, but their specific capacitance is limited to fewer than about 300 F g−1 [18–22]. The electrochemical performance like specific capacitance, stability, lifespan etc. under different deformation is a basal parameter in the process of development of stretchable SCs, must be considered.


Скачать книгу