Thermal Food Engineering Operations. NITIN KUMAR
Ting, Y., & Farahnaky, A. (2019). Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations. Trends in Food Science & Technology, 86, 328-339.
24. Gong, C., Zhao, Y., Zhang, H., Yue, J., Miao, Y., & Jiao, S. (2019). Investigation of radio frequency heating as a dry-blanching method for carrot cubes. Journal of Food Engineering, 245, 53-56.
25. Gunasekaran, S., & Yang, H. W. (2007). Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating. Journal of Food Engineering, 78(4), 1452–1456. https://doi.org/10.1016/j.jfoodeng.2006.01.017
26. Guo, C., Mujumdar, A. S., & Zhang, M. (2019). New development in radio frequency heating for fresh food processing: A review. Food Engineering Reviews, 11(1), 29-43.
27. Guo, Q., Sun, D. W., Cheng, J. H., & Han, Z. (2017). Microwave processing techniques and their recent applications in the food industry. Trends in Food Science & Technology, 67, 236-247.
28. Horuz, E., & Maskan, M. (2015). Hot air and microwave drying of pomegranate (Punica granatum L.) arils. Journal of Food Science and Technology, 52(1), 285-293.
29. Huang, E., & Mittal, G. S. (1995). Meatball cooking - modeling and simulation. Journal of Food Engineering, 24(1), 87–100. https://doi.org/10.1016/0260-8774(94)P1610-A
30. Jiang, H., Zhang, M., Mujumdar, A. S., & Lim, R. X. (2013). Analysis of temperature distribution and SEM images of microwave freeze drying banana chips. Food and Bioprocess Technology, 6(5), 1144-1152.
31. Jiang, H., Zhang, M., Mujumdar, A. S., & Lim, R. X. (2016). Drying uniformity analysis of pulse-spouted microwave–freeze drying of banana cubes. Drying Technology, 34(5), 539-546.
31. Jiao, Y., Tang, J., Wang, Y., & Koral, T. L. (2018). Radio-frequency applications for food processing and safety. Annual Review of Food Science and Technology, 9, 105-127.
32. Jouquand, C., Tessier, F. J., Bernard, J., Marier, D., Woodward, K., Jacolot, P., ... & Laguerre, J. C. (2015). Optimization of microwave cooking of beef burgundy in terms of nutritional and organoleptic properties. LWT-Food Science and Technology, 60(1), 271-276.
33. Kappe, C. O. (2013). How to measure reaction temperature in microwave-heated transformations. Chemical Society Reviews, 42(12), 4977-4990.
34. Kaur, N., & Singh, A. K. (2016). Ohmic heating: concept and applications—a review. Critical Reviews in Food Science and Nutrition, 56(14), 2338-2351.
35. Kim, J. E., Oh, Y. J., Won, M. Y., Lee, K. S., & Min, S. C. (2017). Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiology, 62, 112-123.
36. Knoerzer, K., Juliano, P., & Smithers, G. (2016). Innovative Food Processing Technologies: Extraction, Separation, Component Modification and Process Intensification. In Innovative Food Processing Technologies: Extraction, Separation, Component Modification and Process Intensification. Elsevier Inc.
37. Koutchma, T., Popović, V., Ros-Polski, V., & Popielarz, A. (2016). Effects of Ultraviolet Light and High-Pressure Processing on Quality and Health-Related Constituents of Fresh Juice Products. Comprehensive Reviews in Food Science and Food Safety, 15(5), 844–867. https://doi.org/10.1111/1541-4337.12214.
38. Kowalski, S. J., Pawłowski, A., Szadzińska, J., Łechtańska, J., & Stasiak, M. (2016). High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science & Emerging Technologies, 34, 225-233.
39. Krishnamurthy, K., Khurana, H. K., Soojin, J., Irudayaraj, J., & Demirci, A. (2008). Infrared Heating in Food Processing: An Overview. Comprehensive Reviews in Food Science and Food Safety, 7(1), 2–13. https://doi.org/10.1111/j.1541-4337.2007.00024.x.
40. Kumar, C., Saha, S., Sauret, E., Karim, A., & Gu, Y. (2016). Mathematical modelling of heat and mass transfer during Intermittent Microwave-Convective Drying (IMCD) of food materials. In Proceedings of the 10th Australasian Heat and Mass Transfer Conference: Selected, Peer Reviewed Papers: (pp. 171-176). School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology.
41. Li, R., Huang, L., Zhang, M., Mujumdar, A. S., & Wang, Y. C. (2014). Freeze drying of apple slices with and without application of microwaves. Drying Technology, 32(15), 1769-1776.
42. Liu, Z., Qiao, L., Yang, F., Gu, H., & Yang, L. (2017). Brönsted acidic ionic liquid based ultrasound-microwave synergistic extraction of pectin from pomelo peels. International Journal of Biological Macromolecules, 94, 309-318.
43. Lind, I. (1991). The measurement and prediction of thermal properties of food during freezing and thawing - A review with particular reference to meat and dough. In Journal of Food Engineering (Vol. 13, Issue 4, pp. 285– 319). Elsevier. https://doi.org/10.1016/0260-8774(91)90048-W.
44. Lopez-Iturri, P., de Miguel-Bilbao, S., Aguirre, E., Azpilicueta, L., Falcone, F., & Ramos, V. (2015). Estimation of radiofrequency power leakage from microwave ovens for dosimetric assessment at nonionizing radiation exposure levels. BioMed Research International, 2015.
45. Lung, R. B., Masanet, E., & Mckane, A. (2006). The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry. In 2006 Industrial Energy Technology ConferenceProceedings, New Orleans, LA, 05/10-11/2008. COLLABORATION-ResourceDynamicsCorporation/ Virginia. https://digital.library.unt.edu/ark:/67531/metadc898508/.
46. Makroo, H. A., Rastogi, N. K., & Srivastava, B. (2020). Ohmic heating assisted inactivation of enzymes and microorganisms in foods: A review. Trends in Food Science & Technology, 97, 451-465.
47. Marszałek, K., Mitek, M., & Skąpska, S. (2015). Effect of continuous flow microwave and conventional heating on the bioactive compounds, colour, enzymes activity, microbial and sensory quality of strawberry purée. Food and Bioprocess Technology, 8(9), 1864-1876.
48. Ma, Y., Liu, S., Wang, Y., Adhikari, S., Dempster, T. A., & Wang, Y. (2019). Direct biodiesel production from wet microalgae assisted by radio frequency heating. Fuel, 256, 115994.
49. Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G., & Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology, 91(1), 1-8.
50. Mohammad Reza Zareifard. (2014, January). Electrical conductivity data for foods. |. Ohmic Heating in Food Processing. https://www.researchgate.net/publication/280532621_Electrical_conductivity_data_for_foods
51. Moreno-Vilet, L., Hernández-Hernández, H. M., & Villanueva-Rodríguez, S. J. (2018). Current status of emerging food processing technologies in Latin America: Novel thermal processing. Innovative Food Science and Emerging Technologies, 50, 196–206. https://doi.org/10.1016/j.ifset.2018.06.013.
52. Musto, M., Faraone, D., Cellini, F., & Musto, E. (2014). Changes of DNA quality and meat physicochemical properties in bovine supraspinatus muscle during microwave heating. Journal of the Science of Food and Agriculture, 94(4), 785-791.
53.