Против богов. Укрощение риска. Питер Бернстайн
решения. Сегодня мы меньше, чем люди прошлого, полагаемся на суеверия и традиции не потому, что стали умнее, а потому, что наше понимание риска позволяет принимать решения, используя рациональные методы.
Когда Паскаль и Ферма осуществили свой прорыв в таинственный мир вероятности, общество переживало могучую волну нововведений и исследований. К 1654 году шарообразность Земли стала установленным фактом, было открыто множество новых земель, порох обращал в пыль средневековые замки, книгопечатание с использованием наборного шрифта перестало быть новшеством, художники научились пользоваться перспективой, Европа богатела и Амстердамская фондовая биржа процветала. Несколькими годами раньше, в 1630 году, знаменитая дутая Голландская тюльпанная компания прогорела в результате выпуска опционов, очень напоминающих современные финансовые инструменты.
Следствием такого развития событий было изгнание мистицизма. К этому времени Мартин Лютер обнародовал свои тезисы и в изображениях Святой Троицы и святых перестали писать нимбы. Уильям Гарвей открыл систему кровообращения, что опровергло медицинские воззрения древних, а Рембрандт создал картину «Урок анатомии», поражающую безнадежным холодом белого обнаженного человеческого тела. В этих условиях кто-нибудь должен был разработать теорию вероятностей, даже если бы шевалье де Мере не озадачил Паскаля своей головоломкой.
Шли годы, математики превратили теорию вероятностей из забавы игроков в могучий инструмент обработки, интерпретации и использования информации. В условиях, когда остроумные идеи громоздились одна на другую, развитие количественных методов анализа риска, подтолкнувших наступление Нового времени, стало неудержимым.
К 1725 году математики уже соревновались друг с другом в составлении таблиц ожидаемой продолжительности жизни, а британское правительство для пополнения бюджета продавало права на пожизненную ренту. К середине XVIII века в Лондоне уже вовсю велись операции по страхованию мореплавания.
В 1703 году Готфрид фон Лейбниц в письме к швейцарскому математику Якобу Бернулли заметил, что «природа установила шаблоны, имеющие причиной повторяемость событий, но только в большинстве случаев»1. Это замечание подтолкнуло Бернулли к открытию закона больших чисел и разработке методов статистической выборки, получивших широкое применение в столь разных областях, как опросы общественного мнения, дегустация вин, управление складскими запасами и тестирование новых лекарств[3]. Замечание Лейбница – «но только в большинстве случаев» – оказалось более глубоким, нежели он мог предполагать, потому что указывало на огромную роль риска: не будь риска, все было бы предопределено и в мире, где каждое событие идентично предшествующему, даже изменения были бы невозможны.
В 1730 году Абрахам де Муавр установил форму нормального распределения, известного как колоколообразная кривая, и ввел понятие среднего квадратичного
3
В главе 7 подробно описываются достижения Якоба Бернулли. Закон больших чисел, по существу, утверждает, что различие между средними значениями величин, наблюдаемыми в выборке, и истинным средним значением по всей совокупности будет уменьшаться при увеличении объема выборки.