Handbook of Aggregation-Induced Emission, Volume 1. Группа авторов

Handbook of Aggregation-Induced Emission, Volume 1 - Группа авторов


Скачать книгу
and confirmed. The status and degree of the RDBR process, in general, RIR AIE mechanism, also needs to be further determined. More importantly, how the RDBR mechanism can be used to design better AIEgens is what we will do in the future. It is believed that more AIEgens that are based on RDBR mechanism and have exceptional properties will be developed in the near future.

      1 1 Birks, J. B. (1970). Photophysics of Aromatic Molecules. London: Wiley.

      2 2 Mei, J., Hong, Y., Lam, J. W. et al. (2014). Aggregation‐induced emission: the whole is more brilliant than the parts. Advanced Materials 26 (31): 5429–5479.

      3 3 Lim, M. H. and Lippard, S. J. (2007). Metal‐based turn‐on fluorescent probes for sensing nitric oxide. Accounts of Chemical Research 40 (1): 41–51.

      4 4 Tang, C. W. and Vanslyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters 51 (12): 913–915.

      5 5 Luo, J., Xie, Z., Lam, J. W. Y. et al. (2001). Aggregation‐induced emission of 1‐methyl‐1,2,3,4,5‐pentaphenylsilole. Chemical Communications 381 (18): 1740–1741.

      6 6 Hu, R., Lam, J. W. Y., Liu, Y. et al. (2013). Aggregation‐induced emission of tetraphenylethene‐hexaphenylbenzene adducts: effects of twisting amplitude and steric hindrance on light emission of nonplanar fluorogens. Chemistry A European Journal 19 (18): 5617–5624.

      7 7 Tong, H., Hong, Y., Dong, Y. et al. (2006). Fluorescent “light‐up” bioprobes based on tetraphenylethylene derivatives with aggregation‐induced emission characteristics. Chemical Communications ( 35): 3705–3707.

      8 8 An, B.‐K., Kwon, S.‐K., Jung, S.‐D. et al. (2002). Enhanced emission and its switching in fluorescent organic nanoparticles. Journal of the American Chemical Society 124 (48): 14410–14415.

      9 9 Kokado, K. and Chujo, Y. (2009). Polytriazoles with aggregation‐induced emission characteristics: synthesis by click polymerization and application as explosive chemosensors. Macromolecules 42 (5): 1421–1424.

      10 10 Wang, M., Zhang, G., Zhang, D. et al. (2010). Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation‐induced emission feature. Journal of Materials Chemistry 20 (10): 1858–1867.

      11 11 Chen, J., Law, C. C. W., Lam, J. W. Y. et al. (2003). Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1‐substituted 2,3,4,5‐tetraphenylsiloles. Chemistry of Materials 15 (7): 1535–1546.

      12 12 Mei, J., Leung, N. L. C., Kwok, R. T. K. et al. (2015). Aggregation‐induced emission: together we shine, united we soar! Chemical Reviews 115 (21):11718–11940.

      13 13 Feng, H.‐T., Yuan, Y.‐X., Xiong, J.‐B. et al. (2018). Macrocycles and cages based on tetraphenylethylene with aggregation‐induced emission effect. Chemical Society Reviews 47 (19): 7452–7476.

      14 14 Hong, Y., Lam, J. W. Y., and Tang, B. Z. (2011). Aggregation‐induced emission. Chemical Society Reviews 40 (11): 5361−5388.

      15 15 Kwok, R. T. K., Leung, C. W. T., Lam, J. W. Y. et al. (2015). Biosensing by luminogens with aggregation‐induced emission characteristics. Chemical Society Reviews 44 (33): 4228−4238.

      16 16 Hu, R., Leung, N. L., and Tang, B. Z. (2014). AIE macromolecules: syntheses, structures and functionalities. Chemical Society Reviews 43 (13): 4494−4562.

      17 17 Hong, Y., Lam, J. W. Y., and Tang, B. Z. (2009). Aggregation‐induced emission: phenomenon, mechanism and applications. Chemical Communications 45 ( 29):4332−4353.

      18 18 Hu, M., Yuan, Y., Wang, W. et al. (2020). Chiral recognition and enantiomer excess determination based on emission wavelength change of AIEgen rotor. Nature Communications 11: 161.

      19 19 Huang, J., Sun, N., Yang, J. et al. (2012). Benzene‐cored fluorophores with TPE peripheries: facile synthesis, crystallization‐induced blue‐shifted emission, and efficient blue luminogens for non‐doped OLEDS. Journal of Materials Chemistry 22 (24): 12001−12007.

      20 20 Huang, J., Sun, N., Dong, Y. et al. (2013). Similar or totally different: the control of conjugation degree through minor structural modifications, and deep‐blue aggregation‐induced emission luminogens for non‐doped OLEDS. Advanced Functional Materials 23 (18): 2329−2337.

      21 21 Yuan, Y.‐X., Xiong, J.‐B., Luo, J. et al. (2019). The self‐assembly and chiroptical properties of tetraphenylethylene dicycle tetracholesterol with an AIE effect. Journal of Materials Chemistry C 7 (27): 8236–8243.

      22 22 Geddes, C. D. and Lakopwicz, J. R. (2005). Advanced Concepts in Fluorescence Sensing. Norwell: Springer.

      23 23 Jares‐Erijman, E. A. and Jovin, T. M. (2003). Fret imaging. Nature Biotechnology 21 (11): 1387−1395.

      24 24 Liu, Y., Tao, X., Wang, F. et al. (2007). Intermolecular hydrogen bonds induce highly emissive excimers: enhancement of solid‐state luminescence. Journal of Physical Chemistry C 111 (17): 6544−6549.

      25 25 An, B.‐K., Lee, D.‐S., Lee, J.‐S. et al. (2000). Microchannel networks for nanowire patterning. Journal of the American Chemical Society 122 (41): 10232−10233.

      26 26 Li, Y., Li, F., Zhang, H. et al. (2007). Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo (para‐phenylene vinylene): a key factor for aggregation‐induced emission. Chemical Communications 45 ( 3): 231−233.

      27 27 Ren, Y., Kan, W. H., Henderson, M. A. et al. (2011). External‐stimuli responsive photophysics and liquid crystal properties of self‐assembled “phosphole‐lipids”. Journal of the American Chemical Society 133 (42): 17014−17026.

      28 28 Xie, Z., Yang, B., Li, F. et al. (2005). Cross dipole stacking in the crystal of distyrylbenzene derivative: the approach toward high solid‐state luminescence efficiency. Journal of the American Chemical Society 127 (41): 14152−14153.

      29 29 Zhang, J., Xu, B., Chen, J. et al. (2014). An organic luminescent molecule: what will happen when the “butterflies” come together? Advanced Materials 26 (5): 739−745.

      30 30 Yuan, Y.‐X., Wu, B.‐X., Xiong, J.‐B. et al. (2019). Exceptional aggregation‐induced emission from one totally planar molecule. Dyes and Pigments 170: 107556.

      31 31 Luo, J., Song, K., Gu, F. et al. (2011). Switching of non‐helical overcrowded tetrabenzoheptafulvalene derivatives. Chemical Science 2 (10): 2029–2034.

      32 32 Leung, N. L., Xie, N., Yuan, W. et al. (2014). Restriction of intramolecular motions: the general mechanism behind aggregation‐induced emission. Chemistry–A European Journal, 20 (47): 15349–15353.

      33 33 Zhao, Z., Zheng, X., Du, L. et al. (2019). Non‐aromatic annulene‐based aggregation‐induced emission system via aromaticity reversal process. Nature Communications 10 (1): 1–10.

      34 34 Yao, L., Zhang, S., Wang, R. et al. (2014). Highly efficient near‐infrared organic light‐emitting diode based on a butterfly‐shaped donor–acceptor chromophore with strong solid‐state fluorescence and a large proportion of radiative excitons. Angewandte Chemie International Edition 53 (8): 2119–2123.

      35 35 Liu, J., Meng, Q., Zhang, X. et al. (2013). Aggregation‐induced emission enhancement based on 11, 11, 12, 12,‐tetracyano‐9, 10‐anthraquinodimethane. Chemical Communications 49 (12): 1199–1201.

      36 36 Kamaldeep, K. S. n., Kaur, S., Bhalla, V. et al. (2014). Pentacenequinone derivatives for preparation of gold nanoparticles: facile synthesis and catalytic application. Journal of Materials Chemistry A 2 (22): 8369–8375.

      37 37 Banal, J. L., White, J. M., Ghiggino, K. P. et al. (2014). Concentrating aggregation‐induced fluorescence in planar waveguides: a proof‐of‐principle. Scientific Reports 4 (1): 1–5.

      38 38 Irie, M., Fukaminato, T., Matsuda, K. et al. (2014). Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chemical Reviews 114 (24): 12174–12277.

      39 39 Yuan, Y. X. and Zheng,


Скачать книгу