Introduction to UAV Systems. Mohammad H. Sadraey

Introduction to UAV Systems - Mohammad H. Sadraey


Скачать книгу
airfoil is referred to as symmetric airfoil; otherwise it is called a cambered airfoil. The camber of airfoil is usually positive.

      Two of the most important parameters of an airfoil are camber and the thickness‐to‐chord ratio. The wing/tail is a three‐dimensional component, while the airfoil is a two‐dimensional (2d) section. Because of the airfoil section, two other outputs of the airfoil, and consequently the wing/tail, are drag and pitching moment.

Schematic illustration of airfoil geometric parameters. Schematic illustration of infinite span wing.

      Figure 3.4 also illustrates a few of the infinite number of streamlines around a wing. A streamline is a curve in the flowfield that is tangent to the local velocity vector at every point along the curve. Upstream of the wing, the flow is uniform with a constant velocity.

      In the 1950s, airfoils were classified by the National Advisory Committee for Aeronautics (NACA), the forerunner of the present NASA, and were cataloged using a four/five digits code. The details of NACA airfoils have been presented in a book published by Abbott and Von Donehoff [9]. The NACA airfoils are one of the most common and one of the oldest airfoil families.

      Figure 3.5 shows the profile of a cross‐section of this airfoil which has a thickness‐to‐chord ratio of 21%. The x (horizontal) and y (vertical) coordinates of the surface are plotted as x/c and y/c, where c is the chord of the airfoil, its total length from nose to tail.

Schematic illustration of NACA 23021 airfoil profile. Schematic illustration of NACA 23021 airfoil coefficients versus angle of attack.

      The NASA LRN 1015 (NASA TM 102840) airfoil is used on the Northrop Grumman RQ‐4 Global Hawk (see Figure 1.4) wing. The airfoil maximum thickness is 15.2% at 40% chord, and its maximum camber is 4.9% at 44% chord.

Schematic illustration of NACA 23021 airfoil coefficients versus lift coefficient.

      The aerodynamic forces on an object in the airflow (e.g., wing) can be calculated from pressure distribution around the object. The lift of a wing/tail is produced due to the pressure difference between the lower and upper surfaces. An airfoil‐shaped body moved through the air will vary the static pressure on the top surface and on the bottom surface of the airfoil.


Скачать книгу