Handbook of Aggregation-Induced Emission, Volume 3. Группа авторов
diodes. J. Mater. Chem. 2011; 21(29):10949–56.
44 44 Huang, J., Yang, X., Wang, J., Zhong, C., Wang, L., Qin, J., et al. New tetraphenylethene‐based efficient blue luminophors: aggregation induced emission and partially controllable emitting color. J. Mater. Chem. 2012; 22(6):2478–84.
45 45 Gong, W.‐L., Wang, B., Aldred, M. P., Li, C., Zhang, G.‐F., Chen, T., et al. Tetraphenylethene‐decorated carbazoles: synthesis, aggregation‐induced emission, photo‐oxidation and electroluminescence. J. Mater. Chem. C. 2014; 2(34):7001–12.
46 46 Yang, J., Li, L., Yu, Y., Ren, Z., Peng, Q., Ye, S., et al. Blue pyrene‐based AIEgens: inhibited intermolecular π–π stacking through the introduction of substituents with controllable intramolecular conjugation, and high external quantum efficiencies up to 3.46% in non‐doped OLEDs. Mater. Chem. Front. 2017; 1(1):91–9.
47 47 Yang, J., Huang, J., Sun, N., Peng, Q., Li, Q., Ma, D., et al. Twist versus linkage mode: which one is better for the construction of blue luminogens with AIE properties? Chem. Eur. J. 2015; 21(18):6862–8.
48 48 Yang, X., Zhao, Z., Ran, H., Zhang, J., Chen, L., Han, R., et al. New pyrene‐based butterfly‐shaped blue AIEgens: synthesis, structure, aggregation‐induced emission and their nondoped blue OLEDs. Dyes Pigm. 2020; 173:107881.
49 49 Yang, J., Qin, J. W., Ren, Z. C., Peng, Q., Xie, G. H., Li, Z. Pyrene‐based blue AIEgen: enhanced hole mobility and good EL performance in solution‐processed OLEDs. Molecules. 2017; 22(12):2144.
50 50 Huang, J., Sun, N., Dong, Y., Tang, R., Lu, P., Cai, P., et al. Similar or totally different: the control of conjugation degree through minor structural modifications, and deep‐blue aggregation‐induced emission luminogens for non‐doped OLEDs. Adv. Funct. Mater. 2013; 23(18):2329–37.
51 51 Huang, J., Sun, N., Yang, J., Tang, R., Li, Q., Ma, D., et al. Benzene‐cored fluorophors with TPE peripheries: facile synthesis, crystallization‐induced blue‐shifted emission, and efficient blue luminogens for non‐doped OLEDs. J. Mater. Chem. 2012; 22(24):12001–7.
52 52 Zhang, J., Li, A., Zou, H., Peng, J., Guo, J., Wu, W., et al. A “simple” donor–acceptor AIEgen with multi‐stimuli responsive behavior. Mater. Horiz. 2020; 7(1):135–42.
53 53 Martin, C., Borreguero, C., Kennes, K., Van der Auweraer, M., Hofkens, J., de Miguel, G., et al. Bipolar luminescent azaindole derivative exhibiting aggregation‐induced emission for non‐doped organic light‐emitting diodes. J. Mater. Chem. C. 2019; 7(5):1222–7.
54 54 Wang, Y., Liao, Y., Cabry, C. P., Zhou, D., Xie, G., Qu, Z., et al. Highly efficient blueish‐green fluorescent OLEDs based on AIE liquid crystal molecules: from ingenious molecular design to multifunction materials. J. Mater. Chem. C. 2017; 5(16):3999–4008.
55 55 Yang, J., Sun, N., Huang, J., Li, Q., Peng, Q., Tang, X., et al. New AIEgens containing tetraphenylethene and silole moieties: tunable intramolecular conjugation, aggregation‐induced emission characteristics and good device performance. J. Mater. Chem. C. 2015; 3(11):2624–31.
56 56 Feng, W., Su, Q., Ma, Y., Džolić, Z., Huang, F., Wang, Z., et al. Tetraphenylbenzosilole: an AIE building block for deep‐blue emitters with high performance in nondoped spin‐coating OLEDs. J. Org. Chem. 2020; 85(1):158–67.
57 57 Chen, M., Nie, H., Song, B., Li, L., Sun, J. Z., Qin, A., et al. Triphenylamine‐functionalized tetraphenylpyrazine: facile preparation and multifaceted functionalities. J. Mater. Chem. C. 2016; 4(14):2901–8.
58 58 Chen, M., Li, L., Nie, H., Tong, J., Yan, L., Xu, B., et al. Tetraphenylpyrazine‐based AIEgens: facile preparation and tunable light emission. Chem. Sci. 2015; 6(3):1932–7.
59 59 Wu, H., Pan, Y., Zeng, J., Du, L., Luo, W., Zhang, H., et al. Novel strategy for constructing high efficiency OLED emitters with excited state quinone‐conformation induced planarization process. Adv. Opt. Mater. 2019; 7(18):1900283.
60 60 Pan, L., Wu, H., Liu, J., Xue, K., Luo, W., Chen, P., et al. Tetraphenylpyrazine based AIE luminogens: unique excited state decay and its application in deep‐blue light‐emitting diodes. Adv. Opt. Mater. 2019; 7(6):1801673.
61 61 Odabas, S., Tekin, E., Turksoy, F., Tanyeli, C. Inexpensive and valuable: a series of new luminogenic molecules with the tetraphenylethene core having excellent aggregation induced emission properties. J. Mater. Chem. C. 2013; 1(42):7081–91.
62 62 Odabas, S., Tekin, E., Turksoy, F., Tanyeli, C. Synthesis of new N‐heteroaromatic attached tetraphenylethene based luminogens having aggregation induced emission and their applications in organic light emitting diodes. J. Lumin. 2016; 176:240–9.
63 63 Qin, W., Liu, J., Chen, S., Lam, J. W. Y., Arseneault, M., Yang, Z., et al. Crafting NPB with tetraphenylethene: a win–win strategy to create stable and efficient solid‐state emitters with aggregation‐induced emission feature, high hole‐transporting property and efficient electroluminescence. J. Mater. Chem. C. 2014; 2(19):3756–61.
64 64 Peng, Z., Huang, K., Tao, Y., Li, X., Zhang, L., Lu, P., et al. Turning on the solid emission from non‐emissive 2‐aryl‐3‐cyanobenzofurans by tethering tetraphenylethene for green electroluminescence. Mater. Chem. Front. 2017; 1(9):1858–65.
65 65 Xiong, Y., Zeng, J. J., Chen, B., Lam, J. W. Y., Zhao, Z. J., Chen, S. M., et al. New carbazole‐substituted siloles for the fabrication of efficient non‐doped OLEDs. Chin. Chem. Lett. 2019; 30(3):592–6.
66 66 Gupta, V. K., Singh, R. A. Aggregation‐induced enhanced green light emission from a simple donor–π–acceptor (D–π–A) material: a structure–property relationship study. Faraday Discuss. 2017; 196(0):131–42.
67 67 Chen, L., Zhang, C., Lin, G., Nie, H., Luo, W., Zhuang, Z., et al. Solution‐processable, star‐shaped bipolar tetraphenylethene derivatives for the fabrication of efficient nondoped OLEDs. J. Mater. Chem. C. 2016; 4(14):2775–83.
68 68 Shi, H., Xin, D., Bai, S.‐D., Fang, L., Duan, X.‐E., Roose, J., et al. The synthesis, crystal structures, aggregation‐induced emission and electroluminescence properties of two novel green‐yellow emitters based on carbazole‐substituted diphenylethene and dimesitylboron. Org. Electron. 2016; 33:78–87.
69 69 Shi, H., Xin, D., Gu, X., Zhang, P., Peng, H., Chen, S., et al. The synthesis of novel AIE emitters with the triphenylethene‐carbazole skeleton and para‐/meta‐substituted arylboron groups and their application in efficient non‐doped OLEDs. J. Mater. Chem. C. 2016; 4(6):1228–37.
70 70 Zhao, Q., Sun, J. Z. Red and near infrared emission materials with AIE characteristics. J. Mater. Chem. C. 2016; 4(45):10588–609.
71 71 Zhang, L. P., Che, W. L., Yang, Z. Y., Liu, X. M., Liu, S., Xie, Z. G., et al. Bright red aggregation‐induced emission nanoparticles for multifunctional applications in cancer therapy. Chem. Sci. 2020; 11(9):2369–74.
72 72 Xu, W., Lee, M. M. S., Nie, J.‐J., Zhang, Z., Kwok, R. T. K., Lam, J. W. Y., et al. Three‐pronged attack by homologous far‐red/NIR AIEgens to achieve 1+1+1>3 synergistic enhanced photodynamic therapy. Angew. Chem. Int. Ed. 2020;59:9610–16.
73 73 Wan, Q., Tong, J., Zhang, B., Li, Y., Wang, Z., Tang B. Z. Exploration of high efficiency AIE‐active deep/near‐infrared red emitters in OLEDs with high‐radiance. Adv. Opt. Mater. 2020; 8(4):1901520.
74 74 Zhao, Z., Deng, C., Chen, S., Lam, J. W. Y., Qin, W., Lu, P., et al. Full emission color tuning in luminogens constructed from tetraphenylethene, benzo‐2,1,3‐thiadiazole and thiophene building blocks. Chem. Commun. 2011; 47(31):8847–9.
75 75 Zhao, Z., Geng, J., Chang, Z., Chen, S., Deng, C., Jiang, T., et al. A tetraphenylethene‐based red luminophor for an efficient non‐doped electroluminescence device and cellular imaging. J. Mater. Chem. 2012; 22(22):11018–21.
76 76 Li, H., Chi, Z., Zhang, X., Xu, B., Liu, S., Zhang, Y., et al. New thermally stable aggregation‐induced emission enhancement compounds for non‐doped red organic light‐emitting diodes. Chem. Commun. 2011; 47(40):11273–5.
77 77 Qin, W., Lam, J. W. Y., Yang, Z., Chen, S., Liang, G.,