Handbook of Aggregation-Induced Emission, Volume 3. Группа авторов

Handbook of Aggregation-Induced Emission, Volume 3 - Группа авторов


Скачать книгу
LSC. Notably, red‐emitting PMMA_TPE_RED films showed a ΦF of 26.5%, and in dispersion with 50 wt.% of PMMA, it provided 30‐μm thick blend films with max optical efficiencies of 10%. This result was reported the highest ever registered with the same G factor (16.6) and therefore consistent for the AIEgen utilization in LSC technology.

      This work would not have existed without the fundamental support of Dr. Giuseppe Iasilli and Dr. Pierpaolo Minei, who contributed to the success of the Smart Polymer Group in Pisa. The financial support by the MIUR‐PRIN 20179BJNA2 is kindly acknowledged.

      1 1 de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, et al. (1997). Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97(5): 1515–66.

      2 2 McQuade DT, Pullen AE, Swager TM (2000). Conjugated polymer‐based chemical sensors. Chem. Rev. 100(7): 2537–74.

      3 3 Adhikari B, Majumdar S (2004). Polymers in sensor applications. Progr. Polym. Sci. 29(7): 699–766.

      4 4 Thomas SW, III, Joly GD, Swager TM (2007). Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107(4): 1339–86.

      5 5 Winnik FM, Whitten DG, Urban MW, Lopez G (2007). Stimuli‐responsive materials: polymers, colloids, and multicomponent systems. Langmuir 23(1): 1–2.

      6 6 Wu J, Liu W, Ge J, Zhang H, Wang P (2011). New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 40(7): 3483–95.

      7 7 Schaeferling M (2012). The art of fluorescence imaging with chemical sensors. Angew. Chem. Int. Ed. 51(15): 3532–54.

      8 8 Lodeiro C, Capelo JL, Mejuto JC, Oliveira E, Santos HM, Pedras B, et al. (2010). Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio‐inspired systems as chemosensors. Chem. Soc. Rev. 39(8): 2948–76.

      9 9 Basabe‐Desmonts L, Reinhoudt DN, Crego‐Calama M (2007). Design of fluorescent materials for chemical sensing. Chem. Soc. Rev. 36(6): 993–1017.

      10 10 Demchenko AP (2009). Introduction to Fluorescence Sensing. Springer: Netherlands.

      11 11 Valeur B, Berberan‐Santos MN (2012). Molecular Fluorescence: Principles and Applications. Weinheim (Germany): Wiley‐VCH.

      12 12 Nadler A, Schultz C (2013). The power of fluorogenic probes. Angew. Chem. Int. Ed. 52(9): 2408–10.

      13 13 Pucci A, Bizzarri R, Ruggeri G (2011). Polymer composites with smart optical properties. Soft Mat. 7(8): 3689–700.

      14 14 Pucci A, Ruggeri G (2011). Mechanochromic polymer blends. J. Mater. Chem. 21(23): 8282–91.

      15 15 Urban MW (2011). Handbook of Stimuli‐Responsive Materials. Weinheim, Germany: Wiley‐VCH Verlag GmbH & Co. KGaA.

      16 16 Ciardelli F, Ruggeri G, Pucci A (2013). Dye‐containing polymers: methods for preparation of mechanochromic materials. Chem. Soc. Rev. 42(3): 857–70.

      17 17 May PA, Moore JS (2013). Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem. Soc. Rev. 42(18): 7497–506.

      18 18 Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, et al. (2001). Aggregation‐induced emission of 1‐methyl‐1,2,3,4,5‐pentaphenylsilole. Chem. Commun. (Camb. UK) (18): 1740–1.

      19 19 Hong Y, Lam Jacky WY, Tang BZ (2011). Aggregation‐induced emission. Chem. Soc. Rev. 40(11): 5361–88.

      20 20 Hong Y, Lam JWY, Tang BZ (2009). Aggregation‐induced emission: phenomenon, mechanism and applications. Chem. Commun. (Camb. UK) (29): 4332–53.

      21 21 Hong Y, Lam Jacky WY, Tang Ben Z (2011). Aggregation‐induced emission. Chem. Soc. Rev. 40(11): 5361–88.

      22 22 Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014). Aggregation‐induced emission: the whole is more brilliant than the parts. Adv. Mater. (Weinheim, Ger.) 26(31): 5429–79.

      23 23 Qiu Z, Liu X, Lam JWY, Tang BZ (2019). The marriage of aggregation‐induced emission with polymer science. Macromol. Rapid Commun. 40(1): 1800568.

      24 24 Hu R, Kang Y, Tang BZ (2016). Recent advances in AIE polymers. Polym. J. (Tokyo, Jpn.) 48(4): 359–70.

      25 25 Hu R, Lam JWY, Tang BZ. AIE‐active Polymers. John Wiley & Sons Ltd.; 2014. p. 253–83, 3 plates.

      26 26 Hu R, Leung NLC, Tang BZ (2014). AIE macromolecules: syntheses, structures and functionalities. Chem. Soc. Rev. 43(13): 4494–562.

      27 27 Hu YB, Lam JWY, Tang BZ (2019). Recent progress in AIE‐active polymers. Chin. J. Polym. Sci. 37(4): 289–301.

      28 28 Qin A, Lam JWY, Tang BZ (2012). Luminogenic polymers with aggregation‐induced emission characteristics. Prog. Polym. Sci. 37(1): 182–209.

      29 29 Pucci A, Ruggeri G, Bronco S, Bertoldo M, Cappelli C, Ciardelli F (2007). Conferring dichroic properties and optical responsiveness to polyolefins through organic chromophores and metal nanoparticles. Progr. Org. Coat. 58(2–3): 105–16.

      30 30 Pucci A, Ruggeri G, Bronco S, Signori F, Donati F, Bernabò M, et al. (2011). Colour responsive smart polymers and biopolymers films through nanodispersion of organic chromophores and metal particles. Progr. Org. Coat. 72(1–2): 21–5.

      31 31 Th F and Kasper K (1954). Ein konzentrationsumschlag der fluoreszenz. Z. Phys. Chem. 1(5–6): 275–7.

      32 32 Yang J, Chi Z, Zhu W, Tang BZ, Li Z (2019). Aggregation‐induced emission: a coming‐of‐age ceremony at the age of eighteen. Sci. Chin. Chem. 62(9): 1090–8.

      33 33 Gu J, Qin A, Tang BZ (2019). Polymers with aggregation‐induced emission characteristics. In: Tang Y, Tang BZ, editors. Principles and Applications of Aggregation‐Induced Emission. Cham: Springer International Publishing. p. 77–108.

      34 34 Qi J, Chen C, Ding D, Tang BZ (2018). Aggregation‐induced emission luminogens: union is strength, gathering illuminates healthcare. Adv. Healthcare Mater. 7(20): 1800477.

      35 35 Xu S, Duan Y, Liu B (2020). Precise molecular design


Скачать книгу