Handbook of Aggregation-Induced Emission, Volume 3. Группа авторов
of biological assays. Also, the turn‐on/light‐up nature of the AI‐ECL sensors makes them promising for on‐site screening and household testing. Although the field is still in its infancy, the entire amount of reports has demonstrated to be an emerging and appealing research area. The simplicity of the AI‐ECL systems and their promising results will undoubtedly encourage scientists to develop new strategies for application platforms.
References
1 1 Bard AJ. Electrogenerated Chemiluminescence. Dekker M, editor. New York: Marcel Dekker, Inc.: New York.; 2004.
2 2 Richter MM. Electrochemiluminescence (ECL). Chem. Rev. 2004 Jun; 104(6):3003–36.
3 3 Miao W. Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev. 2008; 108(7):2506–53.
4 4 Forster RJ, Bertoncello P, Keyes TE. Electrogenerated Chemiluminescence. Annu. Rev. Anal. Chem. 2009; 2:359–85.
5 5 Li L, Chen Y, Zhu J‐J. Recent Advances in Electrochemiluminescence Analysis. Anal. Chem. 2017; 89(1):358–71.
6 6 Hercules DM. Chemiluminescence Resulting from Electrochemically. Science. 1964; 145:808–9.
7 7 Santhanam KSV, Bard AJ. J. Am. Chem. Soc. 1965; 87:139.
8 8 Tokel NE, Bard AJ. Electrogenerated Chemiluminescence. IX. Electrochemistry and Emission From Systems Containing Tris(2,2’‐Bipyridine)Ruthenium(Ii) Dichloride. J. Am. Chem. Soc. 1972; 94(8):2862–3.
9 9 Lytle FE, Hercules DM. Chemiluminescence from the Reduction of Aromatic Amine Cations and Ruthenium(III) Chelates. Photochem. Photobiol. 1971; 13:123–33.
10 10 Tokel‐Takvoryan NE, Hemingway RE, Bard AJ. Electrogenerated Chemiluminescence. XIII. Electrochemical and Electrogenerated Chemiluminescence Studies of Ruthenium Chelates. J. Am. Chem. Soc. 1973; 95(20):6582–9.
11 11 Bard AJ. Electrogenerated Chemiluminescence. 2004.
12 12 Leland JK, Powell MJ. Electrogenerated Chemiluminescence: An Oxidative‐Reduction Type ECL Reaction Sequence Using Tripropyl Amine. J. Electrochem. Soc. 1990; 137:3127.
13 13 Mydlak M, Bizzarri C, Hartmann D, Sarfert W, Schmid G, De Cola L. Positively Charged Iridium(lll) Triazole Derivatives As Blue Emitters For Light‐Emitting Electrochemical Cells. Adv. Funct. Mater. 2010; 20(11):1812–20.
14 14 Lamansky S, Djurovich P, Murphy D, Abdel‐Razzaq F, Kwong R, Tsyba I, et al. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes. Inorg. Chem. 2001; 40(7):1704–11.
15 15 Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, et al. Blue and Near‐UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl Or N‐Heterocyclic Carbene Ligands. Inorg. Chem. 2005; 44(22):7992–8003.
16 16 Laird S, Hogan CF. Electrochemiluminescence of Iridium Complexes. In: Iridium(III) in Optoelectronic and Photonics Applications. John Wiley & Sons, Ltd; 2017. p. 359–414.
17 17 Kim J Il, Shin I, Kim H, Lee J. Efficient Electrogenerated Chemiluminescence from Cyclometalated Iridium(III) Complexes. J. Am. Chem. Soc. 2005; 127(Iii):1614–5.
18 18 Santhanam K, Bard A. Chemiluminescence of Electrogenerated 9,10‐Diphenylanthracene Anion Radical. J. Am. Chem. Soc. 1965; 2243:139–40.
19 19 Werner TC, Chang J, Hercules DM. The Electrochemiluminescence of Anthracene and 9,10‐Dimethylanthracene the Role of Direct Excimer Formation 1a. J. Am. Chem. Soc. 1970; 92(4):763–8.
20 20 Suk J, Wu Z, Wang L, Bard AJ. Electrochemistry, Electrogenerated Chemiluminescence, and Excimer Formation Dynamics of Intramolecular Π‐Stacked 9‐Naphthylanthracene Derivatives and Organic Nanoparticles. J. Am. Chem. Soc. 2011; 133(37):14675–85.
21 21 Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ. Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots. Science. 2002; 296(5571):1293–7.
22 22 Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A, et al. Electrogenerated Chemiluminescence from Metal Complexes‐Based Nanoparticles for Highly Sensitive Sensors Applications. Coord. Chem. Rev. 2018; 367:65–81.
23 23 Bertoncello P, Stewart AJ, Dennany L. Analytical Applications of Nanomaterials In Electrogenerated Chemiluminescence. Anal. Bioanal. Chem. 2014; 406:5573–87.
24 24 Yu Y, Zhou M, Cui H. Synthesis and Electrochemiluminescence of Bis(2,2′‐Bipyridine)(5‐Amino‐1,10‐Phenanthroline) Ruthenium(II)‐Functionalized Gold Nanoparticles. J. Mater. Chem. 2011; 21(34):12622–5. Available from: http://xlink.rsc.org/?DOI=c1jm11843a
25 25 Chem JM, Dennany L, Gerlach M, Carroll SO, Keyes TE, Forster J, et al. Electrochemiluminescence (ECL) Sensing Properties of Water Soluble Core‐Shell Cdse/Zns Quantum Dots/Nafion Composite Films. J. Mater. Chem. 2011;13984–90.
26 26 Carrara S, Arcudi F, Prato M, Cola L De. Amine‐Rich Nitrogen‐Doped Carbon Nanodots as a Platform for Self‐Enhancing Electrochemiluminescence. Angew. Chem. Int. Ed. 2017; 56:4757–61.
27 27 Carrara S, Stringer B, Shokouhi A, Ramkissoon P, Agugiaro J, Wilson DJD, et al. Unusually Strong Electrochemiluminescence from Iridium‐Based Redox Polymers Immobilized as Thin Layers or Polymer Nanoparticles. ACS. Appl. Mater. Interfaces. 2018; 10(43):37251–7.
28 28 Carrara S, Aliprandi A, Hogan CF, De Cola L. Aggregation‐Induced Electrochemiluminescence of Platinum(II) Complexes. J. Am. Chem. Soc. 2017; 139(41):14605–10.
29 29 Miao W, Choi J‐P, Bard AJ. Electrogenerated Chemiluminescence 69: The Tris(2,2’‐Bipyridine)Ruthenium(II), (Ru(bpy)3(2+))/Tri‐N‐Propylamine (Tpra) System Revisited‐A New Route Involving Tpra* + Cation Radicals. J. Am. Chem. Soc. 2002; 124(48):14478–85.
30 30 Richter MM. Electrochemiluminescence (ECL). Chem. Rev. 2004; 104(6):3003–36.
31 31 Wang Z, Feng Y, Wang N, Cheng Y, Quan T, Ju H. Donor−Acceptor Conjugated Polymer Dots for Tunable Electrochemiluminescence Activated by Aggregation‐Induced Emission‐Active Moieties. J. Phys. Chem. Lett. 2018; 9:5296–302.
32 32 Fernandez‐Hernandez JM, Longhi E, Cysewski R, Polo F, Josel H‐P, De Cola L. Photophysics and Electrochemiluminescence of Bright Cyclometalated Ir(III) Complexes in Aqueous Solutions. Anal. Chem. 2016; 88(8):4174–8.
33 33 Rubinstein I, Bard AJ. Electrogenerated Chemiluminescence. 37. Aqueous ECL Systems Based on Tris(2,2’‐Bipyridine)Ruthenium(2+) and Oxalate or Organic Acids. J. Am. Chem Soc. 1981; 103(3):512–6.
34 34 Obeng YS, Bard AJ. Electrogenerated Chemiluminescence. 53. Electrochemistry and Emission from Adsorbed Monolayers of a Tris(bipyridyl)ruthenium(II)‐Based Surfactant on Gold and Tin Oxide Electrodes. Langmuir. 1991; 7(1):195–201.
35 35 Forster RJ, Hogan CF. Electrochemiluminescent metallopolymer Coatings: Combined Light and Current Detection in Flow Injection Analysis. Anal. Chem. 2000; 72(22):5576–82.
36 36 Spehar‐Délèze AM, Lu Y, Keyes TE, Forster RJ. Near Infrared Emitting Electrochemiluminescent Ruthenium Polymer. ECS. Trans. 2009; 16(28):69–76.
37 37 Dick JE, Renault C, Kim BK, Bard AJ. Electrogenerated Chemiluminescence of Common Organic Luminophores in Water Using an Emulsion System. J. Am. Chem. Soc. 2014; 136(39):13546–9.
38 38 Kai T, Zhou M, Johnson S, Ahn HS, Bard AJ. Direct Observation of C2O4•− and CO2•− by Oxidation of Oxalate within Nanogap of Scanning Electrochemical Microscope. J. Am. Chem. Soc. 2018; 140(47):16178–83.
39 39 Carrara S, Nguyen P, D’Alton L, Hogan CF. Electrochemiluminescence Energy Transfer in Mixed Iridium‐Based Redox Copolymers Immobilized as Nanoparticles. Electrochim. Acta. 2019; 313:379–402.
40 40 Hogan CF, Forster RJ. Mediated Electron Transfer For Electroanalysis: Transport and Kinetics in Tin Films of [Ru(bpy)2PVP10] (ClO 4) 2. Anal. Chim. Acta. 1999; 396:13–21.
41 41 Noffsinger JB, Danielson ND. Generation of Chemiluminescence