Liquid Crystals. Iam-Choon Khoo
release drug delivery systems,” International Journal of Pharmaceutics 309, pp. 218–226 (2006).
8 8. J. M. Brake, M. K. Daschner, Y.‐Y. Luk, et al. “Biomolecular interactions at phospholipid‐decorated surfaces of liquid crystals,” Science 302, pp. 2094–2097 (2003).
9 9. Ciferri, A., W. R. Krigbaum, and R. B. Meyer, eds. 1982. Polymer Liquid Crystals. New York: Academic Press.
10 10. D.‐Y. Guo, C.‐W. Chen, T. J. Bunning, et al. “Reconfiguration of three‐dimensional liquid‐crystalline photonic crystals by electrostriction,” Nature Materials 19, pages 94–101 (2020).
11 11. M. Sawamura, K. Kawai, Y. Matsuo, et al. “Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals,” Nature, ( 419) pp. 702–705, 2002.
12 12. S. Sergeyev, W. Pisulab and Y. H. Geerts, “Discotic liquid crystals: a new generation of organic semiconductors,” Chemical Society Review, 2007, 36, 1902–1929.
13 13. I. McCulloch, Heeney, M., Bailey, C. et al., “Liquid crystalline semiconducting polymers with high charge carrier mobility,” Nature Materials 5, 328–333 (2006).
14 14. G. W. Gray, M. Hird, and K. J. Toyne, The synthesis of several lateral difiuorosubstituted 4,4″‐dialkyl‐ and 4,4″‐alkoxyalkyl‐terphenyls. Molecular Crystals and Liquid Crystals 204, 43–64 (1991).
15 15. C.‐Y. Wang, C.‐W. Chen, H.‐C. Jau, et al. “All‐optical transistor‐ and diode‐action and logic gates based on anisotropic nonlinear responsive liquid crystal,” Scientific Reports 6, 30873 (2016).
16 16. I. C. Khoo, M.‐Y. Shih, M. V. Wood, et al. “Dye‐doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation.” IEEE Proceedings Special Issue on Photorefractive Optics: Materials, Devices and Applications Vol. 87, no. 11, pp. 1897–1911 (1999).
17 17. V. Chigrinov, H. S. Kwok, H. Takada et al. 2005. Photo‐aligning by azo‐dyes: Physics and applications. Liquid Crystals Today 14: 4, 1–15.
18 18. J. W. Doane, N. A. Vaz, B. G. Wu, et al. Field controlled light scattering from nematic microdroplets. Applied Physics Letters 48, 269 (1986).
19 19. J. L. West, Phase separation of liquid crystals in polymers. Molecular Crystals and Liquid Crystals 157, 427–441 (1988).
20 20. I. C. Khoo, Y. Z. Williams, B. Lewis, et al. “Photorefractive CdSe and gold nanowire‐doped liquid crystals and polymer‐dispersed‐liquid‐crystal photonic crystals,” Molecular Crystals and Liquid Crystals 446: 233–244 (2005).
21 21. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, et al. “Holographic formation of electro‐optical polymer‐liquid crystal photonic crystals,” Advanced Materials 14, 187–191 (2002).
22 22. F. Vita, A. Marino, V. Tkachenko, et al. Visible and near infrared characterization and modeling of nanosized holographic polymer dispersed liquid crystals gratings. Physical Review E 72, 011702 (2005), and references therein.
23 23. R. Caputo, L. De Sio, A.V. Sukhov, et al. “Development of a new kind of holographic grating made of liquid crystal films separated by slices of polymeric material”, Optics Letters, 29, 1261 (2004).
24 24. G. Strangi, V. Barna, R. Caputo, et al. "Color tunable distributed feedback organic micro‐cavity laser", Physical Review Letters, 94, 63903 (2005).
25 25. H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436, 997–1000 (2005).
26 26. S. Jen, N. A. Clark, P. S. Pershan et al. “Polarized Raman‐scattering studies of orientational order in uniaxial liquid‐crystalline phases,” Journal of Chemical Physics 66, pp. 4635–4661 (1977).
27 27. A. Priimagi, C. J. Barrettc and A. Shishido, “Recent twists in photoactuation and photoalignment control,” Journal of Materials Chemistry C, 2, 7155–7162 (2014).
28 28. N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro‐optic switching in liquid crystals,” Applied Physics Letters 36, 899 (1980).
29 29. Y. Ouchi, H. Takezoe and A. Fukuda, “Switching process in ferroelectric liquid crystals: disclination dynamics of the surface stabilized states,” Japanese Journal of Applied Physics 26, 1 (1987).
30 30. G. Anderson, I. Dahl, L. Komitov, et al. “Device physics of the soft‐mode electro‐optic effect,” Journal of Applied Physics 66, 4983 (1989).
31 31. See for example, I. C. Khoo, “Cholesteric and blue‐phase liquid photonic crystals for nonlinear optics and ultrafast laser pulse modulations,” Liquid Crystals Reviews 6, 53–77(2018), and references therein.
32 32. C.‐W. Chen and I. C. Khoo, “Extraordinary polarization rotation of vector beams with ultrahigh‐period‐number chiral photonic crystals,” Optics Letters 44, pp. 5306–5309 (2019).
33 33. C.‐W. Chen and I. C. Khoo, “Optical vector field rotation and switching with near‐unity transmission by fully developed chiral photonic crystals,” Proceedings of the National Academy of Sciences 118: e2021304118.
34 34. Chen, C.‐W., Jau, H.‐C., Lee, C.‐H. et al. Temperature dependence of refractive index in blue phase liquid crystals. Optical Materials Express 3, 527–532 (2013), and earlier references on room‐temperature BPLC quoted therein.
35 35. Kikuchi, H., Yokota, M., Hisakado, Y. et al. Polymer‐stabilized liquid crystal blue phases. Nature Materials 2002; 1(1): 64–68.
36 36. Castles, F., Day, F.V., Morris, S.M., et al. Blue‐phase templated fabrication of three‐dimensional nanostructures for photonic applications. Nature Materials 2012; 11(7): 599–603.
37 37. Lin, T.H., Li, Y., Wang, C.T., et al. Red, green and blue reflections enabled in an optically tunable self‐organized 3D cubic nanostructured thin film. Advanced Materials 2013; 25(36): 5050–5054.
38 38. C.‐W. Chen, T. J. Bunning, I.‐C. Khoo et al. “Large three‐dimensional photonic crystals based on monocrystalline liquid crystal blue phases”. Nature Communications 8, 727 (2017).
39 39. I. C. Khoo, “Nonlinear optics, active plasmonic and tunable metamaterials with liquid crystals,” Progress in Quantum Electronics 38 (2): 77–117 (2014) and references therein on nanostructures shown in Figure 1.23.
40 40. Whinnery, J.R., C. Hu, and Y. S. Kwon. Liquid crystal waveguides for integrated optics. IEEE Journal of Quantum Electronics QE13: 262 (1977).
41 41. Giallorenzi, G., J. A. Weiss, and J. P. Sheridan. Light scattering from smectic liquid crystal waveguides. Journal of Applied Physics 47: 1820 (1976).
42 42. H. Vach, C. T. Seaton, G. I. Stegeman et al. “Observation of intensity‐dependent guided waves,”. Optics Letters 9, 238 (1984).
43 43. Graugnard, E., J. S. King, S. Jain, et al. “Electric field tuning of the Bragg peak in large‐pore TiO2 inverse shell opals,” Physical Review B 72: 233105 (2005).
44 44. T. T. Larsen, A. Bjarklev, D. S. Hermann et al. “Optical devices based on liquid crystal photonic bandgap fibers,” Optics Express 11, 2589–2596 (2003).
45 45. J. Ptasinski, I.‐C. Khoo, and Y. Fainman, “Enhanced optical tuning of modified‐geometry resonators clad in blue phase liquid crystals,” Optics Letters 39: 5435–5438 (2014).
46 46. Hao, H., Ren, J., Chen, H. et al. “Tunable enhanced spontaneous emission in plasmonic waveguide cladded with liquid crystal and low‐index metamaterial,” Optics Express 25 (4) 3433–3444 (2017).
47 47. S. Xiao, U. K. Chettiar, A. V. Kildishev, et al. “Tunable magnetic response of metamaterials,” Applied Physics Letters 95 (3): 033115 (2009).
48 48. D. H. Werner, D. H. Kwon, I. C. Khoo, et al. “Liquid crystal clad near‐infrared metamaterials with tunable negative‐zero‐positive refractive indices,” Optics Express 15 (6): 3342–3347 (2007).
49 49. Xu J, Yang R, Fan Y,