RF/Microwave Engineering and Applications in Energy Systems. Abdullah Eroglu

RF/Microwave Engineering and Applications in Energy Systems - Abdullah Eroglu


Скачать книгу
alt="ModifyingAbove upper A With right-arrow dot ModifyingAbove upper B With right-arrow equals upper A Subscript x Baseline upper B Subscript x Baseline plus upper A Subscript y Baseline upper B Subscript y Baseline plus upper A Subscript z Baseline upper B Subscript z"/>

      (1.22)ModifyingAbove upper A With right-arrow times ModifyingAbove upper B With right-arrow equals Start 3 By 3 Determinant 1st Row 1st Column ModifyingAbove x With ampersand c period circ semicolon 2nd Column ModifyingAbove y With ampersand c period circ semicolon 3rd Column ModifyingAbove z With ampersand c period circ semicolon 2nd Row 1st Column upper A Subscript x Baseline 2nd Column upper A Subscript y Baseline 3rd Column upper A Subscript z Baseline 3rd Row 1st Column upper B Subscript x Baseline 2nd Column upper B Subscript y Baseline 3rd Column upper B Subscript z EndDeterminant

      1.2.2.2 Cylindrical Coordinate System

      The magnitude of vector ModifyingAbove upper A With right-arrow is found from

      (1.24)StartAbsoluteValue ModifyingAbove upper A With right-arrow EndAbsoluteValue equals RootIndex StartRoot ModifyingAbove upper A With right-arrow dot ModifyingAbove upper A With right-arrow EndRoot equals RootIndex StartRoot upper A Subscript r Superscript 2 Baseline plus upper A Subscript phi Superscript 2 Baseline plus upper A Subscript z Superscript 2 Baseline EndRoot

      In Figure 1.6, the range of r, ϕ, and z are given as

StartLayout 1st Row r minus radial distance in italic x y plane right-arrow 0 less-than-or-equal-to r less-than-or-equal-to infinity 2nd Row phi minus azimuthal angle measured from x axis right-arrow 0 less-than-or-equal-to phi less-than 2 pi 3rd Row z minus minus infinity less-than 2 pi less-than infinity EndLayout

      The vector operations for dot and cross products for vectors ModifyingAbove upper A With right-arrow and ModifyingAbove upper B With right-arrow are given by

      (1.25)ModifyingAbove upper A With right-arrow dot ModifyingAbove upper B With right-arrow equals upper A Subscript r Baseline upper B Subscript r Baseline plus upper A Subscript phi Baseline upper B Subscript phi Baseline plus upper A Subscript z Baseline upper B Subscript z

      (1.26)ModifyingAbove upper A With right-arrow times ModifyingAbove upper B With right-arrow equals Start 3 By 3 Determinant 1st Row 1st Column ModifyingAbove r With ampersand c period circ semicolon 2nd Column ModifyingAbove phi With ampersand c period circ semicolon 3rd Column ModifyingAbove z With ampersand c period circ semicolon 2nd Row 1st Column upper A Subscript r Baseline 2nd Column upper A Subscript phi Baseline 3rd Column upper A Subscript z Baseline 3rd Row 1st Column upper B Subscript r Baseline 2nd Column upper B Subscript phi Baseline 3rd Column upper B Subscript z EndDeterminant

Schematic illustration of vector A implies in a cylindrical coordinate system.
in a cylindrical coordinate system.

      (1.27)StartLayout 1st Row ModifyingAbove r With ampersand c period circ semicolon times ModifyingAbove phi With ampersand c period circ semicolon equals ModifyingAbove z With ampersand c period circ semicolon 2nd Row ModifyingAbove phi With ampersand c period circ semicolon times ModifyingAbove z With ampersand c period circ semicolon equals ModifyingAbove r With ampersand c period circ semicolon 3rd Row ModifyingAbove z With ampersand c period circ semicolon times ModifyingAbove r With ampersand c period circ semicolon equals ModifyingAbove phi With ampersand c period circ semicolon EndLayout

      1.2.2.3 Spherical Coordinate System

      The magnitude of vector ModifyingAbove upper A With right-arrow is found from

      (1.29)StartAbsoluteValue ModifyingAbove upper A With right-arrow EndAbsoluteValue equals RootIndex StartRoot ModifyingAbove upper A With right-arrow dot ModifyingAbove upper A With right-arrow EndRoot equals RootIndex StartRoot upper A Subscript upper R Superscript 2 Baseline plus upper A Subscript theta Superscript 2 Baseline plus upper A Subscript phi Superscript 2 Baseline EndRoot

      In Figure 1.8, the range of R, θ, and ϕ are given as

StartLayout 1st Row upper R minus radial distance in italic x y plane right-arrow 0 less-than-or-equal-to upper R less-than-or-equal-to infinity 2nd Row theta minus elevation <hr><noindex><a href=Скачать книгу