X-Ray Fluorescence in Biological Sciences. Группа авторов
Queralt, I., Ovejero, M., Carvalho, M.L. et al. (2005). Quantitative determination of essential and trace element content of medicinal plants and their infusions by XRF and ICP techniques. X‐Ray Spectrom. 34 (3): 213–217.
58 58 Chuparina, E.V., Gunicheva, T.N., Belogolova, G.А., and Matushenko, G.V. (2005). Application of X‐ray fluorescence analysis for studying chemical element distributions in different plant parts, examplified artichoke. Anal. Control 9 (4): 405–409. (in Russian).
59 59 Chuparina, E.V. and Gunicheva, T.N. (2004). State and problems of X‐ray fluorescence analysis of plant materials. Anal. Control 8 (3): 211–226. (in Russian).
60 60 Chuparina, E.V. and Martynov, A.M. (2011). Application of nondestructive X‐ray fluorescence analysis to determine the element composition of medicinal plants. J. Anal. Chem. 66 (4): 389–395.
61 61 Anawar, H.M., Canha, N., Freitas, M.C. et al. (2011). Effects of different drying processes on the concentrations of metals and metalloids in plant materials. J. Radioanal. Nucl. Chem. 289: 29–34.
62 62 Kuehner, E.C. and Pella, P.A. (1979). Energy‐dispersive X‐ray spectrometric analysis of NBS standard reference material 1571 orchard leaves after oxidation and borate fusion. Appl. Spectrosc. 33 (6): 632–634.
63 63 Desideri, D., Meli, M.A., Roselli, C., and Feduzi, L. (2011). Polarized X‐ray fluorescence spectrometer (EDPXRF) for the determination of essential and non‐essential elements in tea. Microchem. J. 98: 186–189.
64 64 Desideri, D., Meli, M.A., Roselli, C., and Feduzi, L. (2011). Determination of essential and non‐essential elements in herbal tea and camomile by polarised X‐rays fluorescence spectrometer (EDPXRF). J. Radioanal. Nucl. Chem. 290: 391–396.
65 65 Mbaye, M., Traoré, A., Ndao, A.S., and Wagué, A. (2013). Classification of tea consumed in Senegal using XRF techniques and chemometric based on their country of origin. Afr. J. Agric. Res. 8 (44): 5522–5529.
66 66 Revenko, A.G., Suvorova, D.S., and Khudonogova, E.V. (2018). Investigation of filter applicability for XRF analysis in the longwave range. Anal. Control 22 (2): 117–127. https://doi.org/10.15826/analitika.2018.22.2.009 (in Russian).
67 67 Sahin, Y., Nas, S., and Gokalp, H.Y. (1991). Effect of shooting period, region of growth and processing method on the Fe and Mn content of tea determined by X‐ray fluorescence. Int. J. Food Sci. Technol. 26: 485–492.
68 68 Nas, S., Gokalp, H.Y., and Sahin, Y. (1993). K and Ca content of fresh green tea, black tea, and tea residue determined by X‐ray fluorescence analysis. Z. Lebensm. Unters. Forsch. 196: 32–37.
69 69 Xie, M., von Bohlen, A., Klockenkämper, R. et al. (1998). Multielement analysis of Chinese tea (Camellia sinensis) by total‐reflection X‐ray fluorescence. Z. Lebensm. Unters. Forsch. A 207: 31–38.
70 70 Salvador, M.J., Lopes, G.N., Filho, V.F.N., and Zucchi, O.L.A.D. (2002). Quality control of commercial tea by X‐ray fluorescence. X‐Ray Spectrom. 31 (2): 141–144.
71 71 Brytov, I.A., Plotnikov, R.I., and Rechinsky, A.A. (2005). Material identification by X‐ray spectra. Industrial Lab. Diagn. Mater. 71 (7): 11–17 (In Russian).
72 72 Tanizawa, Y., Abe, T., and Yamada, K. (2007). Black tea stain formed on the surface of teacups and pots. Part 1 – study on the chemical composition and structure. Food Chem. 103 (1): 1–7.
73 73 Ercilsi, S., Demir, F., Budak, G., and Karabulut, A. (2009). Determination of elemental variations in tea leaves (Camellia sinensis L.) in different harvest time by WDXRF spectrometry. Asian J. Chem. 21 (2): 1313–1317.
74 74 Wastowski, A.D., Gonsiorkiewicz, R.J.P., Cherubin, M.R. et al. (2013). Determination of the inorganic constituents of commercial teas and their infusions by the technique of energy dispersive X‐ray fluorescence spectrometry. J. Med. Plant Res. 7: 179–185.
75 75 Afonin, V.P., Gunicheva, T.N., and Piskunova, L.F. (1984). X‐Ray Fluorescence Silicate Analysis. Novosibirsk: Nauka (in Russian).
76 76 Borkhodoev, V.Ya. (1999). X‐Ray Fluorescence Analysis of Rocks by Fundamental Parameter Method. Magadan: NEISRI FEB RAS (in Russian).
77 77 Pavlinsky, G.V. (2008). Fundamentals of X‐Ray Physics. Cambridge: International Science of Publishing Ltd.
78 78 Li, X. and Yu, Z. (2016). Determination of selenium in biological samples with an energy‐dispersive X‐ray fluorescence spectrometer. Appl. Radiat. Isot. 111: 45–49.
79 79 Rajapaksha, D., Waduge, V., and Padilla‐Alvarez, R. (2017). XRF to support food traceability studies: classification of Sri Lankan tea based on their region of origin. X‐Ray Spectrom. 46 (4): 220–224.
80 80 Dalipi, R., Borgese, L., and Tsuji, K. (2018). Elemental analysis of teas, herbs and their infusions by means of total reflection X‐ray fluorescence. J. Food Compos. Anal. 67: 128–134.
81 81 Cruz, R., Morais, S., and Casa, S. (2015). Mineral composition variability of coffees: a result of processing and production. In: Processing and Impact on Active Components in Food (ed. V.R. Preedy), 549–557. Elsevier. Chapter 66.
82 82 Orlic, I., Makanic, J., and Valkovic, V. (1986). Optimization of XRFS for the analysis of toxic elements and heavy metals in coffee products. J. Radioanal. Nucl. Chem. 102 (1): 203–211.
83 83 Ninomiya, T. (2004). X‐Ray Spectrometry in Forensic Research. X‐Ray Spectrometry: Recent Technological Advances (eds. K. Tsuji et al.), Kouichi Tsuji, Jasna Injuk, Rene Van Grieken (Eds.) 553–567. Wiley.
84 84 Akamine, T., Otaka, A., Hokura, A. et al. (2010). Determination of trace elements in coffee beans by XRF spectrometer equipped with polarization optics and its application to identification of their production area. Bunseki Kagaku 59 (10): 863–871.
85 85 Debastiani, R., dos Santos, C.E.I., Yoneama, M.L. et al. (2014). Ion beam analysis of ground coffee and roasted coffee beans. Nucl. Instrum. Methods Phys. Res. B. 318: 202–206.
86 86 Hernandez, M.C., Romero, D., Torres, H. et al. (2017). X‐ray fluorescence analysis of ground coffee. J. Nucl. Phys. Mater. Sci. Rad. Appl. 5 (1): 25–34.
87 87 Debastiani, R., dos Santos, C.E., Ramos, M.M. et al. (2019). Elemental analysis of Brazilian coffee with ion beam techniques: from ground coffee to the final beverage. Food Res. Int. 119: 297–304.
88 88 Maltsev, A.S., Sharykina, D.S., Chuparina, E.V. et al. (2019). Multielement analysis of tea by total reflection X‐ray fluorescence spectrometry. Anal. Control 23 (2): 247–257. (in Russian).
89 89 Dalipi, R., Margui, E., Borgese, L., and Depero, L. (2017). Multi‐element analysis of vegetal foodstuffs by means of low power total reflection X‐ray fluorescence (TXRF) spectrometry. Food Chem. 218: 348–355.
90 90 Revenko, A.G., Losev, N.F., and Velichko, J.I. (1972). Die Methode zur Rontgenspektralаnalyse fur mehrkomponentige Proben unter Benutzung von zwei Entnahme‐winkeln der Fluoreszenzstrahlung. Vortrage der Tagung "Die Rontgen‐spektrometrie und ihre Bedeutung als Analysenmethode, Berlin, 106–128.
91 91 Revenko, A.G., Pavlinsky, G.V., and Losev, N.F. (1972). Study of relation of X‐ray fluorescence intensities with analyzing element concentrations in multicomponent samples. Industrial Lab. 38 (12): 1451–1458 (In Russian).
92 92 Pavlinsky, G.V., Velichko, Y.I., and Revenko, A.G. (1977). Program for calculating the intensity of X‐ray fluorescence spectrum. Industrial Lab. 43 (4): 433–436 (In Russian).
93 93 Pavlinsky, G.V. and Kitov, B.I. (1979). Influence of divergence of the primary radiation beam on the line intensity of the X‐ray fluorescence spectrum. X‐Ray Spectrom. 8 (3): 96–101.
94 94 Velichko, Y.I. and Revenko, A.G. (1979). Use of theoretical intensities in quantitative X‐ray spectral analysis. Review. Apparat. Methods X‐Ray. Anal. 22: 146–161 (In Russian).
95 95 Revenko, A.G. (2002). X‐ray fluorescence analysis of rocks, soils and sediments. X‐Ray Spectrom. 31 (3): 264–273.
96 96 Revenko,