Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic


Скачать книгу
T Baseline circled-times upper A right-parenthesis v e c left-parenthesis upper X right-parenthesis comma"/>

      The last equation can be utilized from both directions. Now we can write down

      Update the parameters – backward propagation: First, we need to compute ∂z/∂vec(xl) and z/∂vec(F), where the first term will be used for backward propagation to the previous (l − 1)th layer, and the second term will determine how the parameters of the current (l−th) layer will be updated. Keep in mind that f, F, and wi refer to the same thing (modulo reshaping of the vector or matrix or tensor). Similarly, we can reshape y into a matrix upper Y element-of double-struck upper R Superscript left-parenthesis upper H Super Superscript l plus 1 Superscript upper W Super Superscript l plus 1 Superscript right-parenthesis times upper D; then y, Y, and xl + 1 refer to the same object (again, modulo reshaping).

Alias Size and Meaning
X x l Hl Wl × Dl, the input tensor
F f , w l HW Dl × D, D kernels, each H × W and Dl channels
Y y , x l+1 Hl + 1 Wl + 1 × Dl + 1, the output, Dl + 1 = D
ϕ( x l) Hl + 1 Wl + 1 × HW Dl, the im2row expansion of x l
M Hl + 1 Wl + 1 HW Dl × Hl Wl Dl, the indictor matrix for ϕ( x l)
StartFraction partial-differential z Over partial-differential upper Y EndFraction StartFraction partial-differential z Over partial-differential v e c left-parenthesis bold-italic y right-parenthesis EndFraction Hl + 1 Wl + 1 × Dl + 1, gradient for y
StartFraction partial-differential z Over partial-differential upper F EndFraction StartFraction partial-differential z Over partial-differential v e c left-parenthesis bold-italic f right-parenthesis EndFraction HW Dl × D, gradient to update the convolution kernels
StartFraction partial-differential z Over partial-differential upper X EndFraction StartFraction partial-differential z Over partial-differential v e c left-parenthesis bold-italic x Superscript l Baseline right-parenthesis EndFraction Hl Wl × Dl, gradient for x l, useful for back propagation

      (3.92)StartFraction partial-differential v e c left-parenthesis y right-parenthesis Over partial-differential left-parenthesis v e c left-parenthesis upper F right-parenthesis Superscript upper T Baseline right-parenthesis EndFraction equals StartFraction partial-differential left-parenthesis <hr><noindex><a href=Скачать книгу