Analytical Methods for Environmental Contaminants of Emerging Concern. Группа авторов
H., Kobylis, P., Stepnowski, P., and Caban, M. (2017). Calibration of passive samplers for the monitoring of pharmaceuticals in water-sampling rate variation. Crit. Rev. Anal. Chem. 47(3): 204–222. doi: 10.1080/10408347.2016.1259063.
27 27 Martínez Bueno, M.J., Herrera, S., Munaron, D., Boillot, C., Fenet, H., Chiron, S., and Gómez, E. (2016). POCIS passive samplers as a monitoring tool for pharmaceutical residues and their transformation products in marine environment. Environ. Sci. Pollut. Res. 23(6): 5019–5029. doi: 10.1007/s11356-014-3796-5.
28 28 Rimayi, C., Chimuka, L., Gravell, A., Fones, G.R., and Mills, G.A. (2019). Use of the Chemcatcher® passive sampler and time-of-flight mass spectrometry to screen for emerging pollutants in rivers in Gauteng Province of South Africa. Environ. Monit. Assess. 191(6): 388. doi: 10.1007/s10661-019-7515-z.
29 29 Jakubus, A., Godlewska, K., Gromelski, M., Jagiello, K., Puzyn, T., Stepnowski, P., and Paszkiewicz, M. (2019). The possibility to use multi-walled carbon nanotubes as a sorbent for dispersive solid phase extraction of selected pharmaceutical and their metabolites: Effect of extraction condition. Microchem. J. 146: 1113–1125. doi: 10.1016/j.microc.2019.02.051.
30 30 Męczykowska, H., Kobylis, P., Stepnowski, P., and Caban, M. (2017). Ionic liquids for the passive sampling of sulfonamides from water – applicability and selectivity study. Anal. Bioanal. Chem. 409(16): 3951–3958. doi: 10.1007/s00216-017-0342-6.
31 31 Caban, M., Męczykowska, H., and Stepnowski, P. (2016). Application of the PASSIL technique for the passive sampling of exemplary polar contaminants (pharmaceuticals and phenolic derivatives) from water. Talanta 155: 185–192. doi: 10.1016/j.talanta.2016.04.035.
32 32 Godlewska, K., Stepnowski, P., and Paszkiewicz, M. (2021). Pollutant analysis using passive samplers: Principles, sorbents, calibration and applications. A review. Environ. Chem. Lett. 19: 465–520. doi: 10.1007/s10311-020-01079-6.
33 33 Białk-Bielińska, A., Kumirska, J., Borecka, M., Caban, M., Paszkiewicz, M., Pazdro, K., and Stepnowski, P. (2016). Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. J Pharm. Biomed. Anal. 121: 271–296. doi: 10.1016/j.jpba.2016.01.016.
34 34 Stolker, A.A.M. and Brinkman, U.A.T. (2005). Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals – A review. J. Chromatogr. A 1067(1–2): 15–53. doi: 10.1016/j.chroma.2005.02.037.
35 35 Pavlović, D.M., Babić, S., Horvat, A.J.M., and Kaštelan-Macan, M. (2007). Sample preparation in analysis of pharmaceuticals. Trends Anal. Chem. 26(11): 1062–1075. doi: 10.1016/j.trac.2007.09.010.
36 36 Kemper, N. (2008). Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8(1): 1–13. doi: 10.1016/j.ecolind.2007.06.002.
37 37 Buchberger, W. (2011). Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. J. Chromatogr. A 1218(4): 603–618. doi: 10.1016/j.chroma.2010.10.040.
38 38 Tadeo, J.L., Sánchez-Brunete, C., Albero, B., García-Valcárcel, A.I., and Pérez, R.A. (2012). Analysis of emerging organic contaminants in environmental solid samples. Cent. Eur. J. Chem. 10(3): 480–520. doi: 10.2478/s11532-011-0157-9.
39 39 Babić, S. and Mutavdžić Pavlović, D. (2013). Analysis of PhACs in solid environmental samples (soil, sediment, and sludge). Compr. Anal. Chem. 62: 129–167. doi: 10.1016/B978-0-444-62657-8.00005-7.
40 40 Havens, S.M., Hedman, C.J., Hemming, J.D.C., Mieritz, M.G., Shafer, M.M., and Schauer, J.J. (2014). Comparison of accelerated solvent extraction, soxhlet and sonication techniques for the extraction of estrogens, androgens and progestogens from soils. J. Agric. Chem. Environ. 03(03): 103–120. doi: 10.4236/jacen.2014.33013.
41 41 Liang, X., Chen, B., Nie, X., Shi, Z., Huang, X., and Li, X. (2013). The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China. Chemosphere 92(11): 1410–1416. doi: 10.1016/j.chemosphere.2013.03.044.
42 42 Chen, H., Liu, S., Xu, X.R., Liu, S.S., Zhou, G.J., and Sun, K.F. (2015). Antibiotics in typical marine aquaculture farms surrounding Hailing Island, South China: Occurrence, bioaccumulation and human dietary exposure. Mar. Pollut. Bull. 90(1–2): 181–187. doi: 10.1016/j.marpolbul.2014.10.053.
43 43 Na, G., Fang, X., Cai, Y., Ge, L., Zong, H., Yuan, X., Yao, Z., and Zhang, Z. (2013). Occurrence, distribution, and bioaccumulation of antibiotics in coastal environment of Dalian, China. Mar. Pollut. Bull. 69(1–2): 233–237. doi: 10.1016/j.marpolbul.2012.12.028.
44 44 Capone, D.G., Weston, D.P., Miller, V., and Shoemaker, C. (1996). Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145(1–4): 55–75. doi: 10.1016/S0044-8486(96)01330-0.
45 45 Stewart, M., Olsen, G., Hickey, C.W., Ferreira, B., Jelić, A., Petrović, M., and Barcelo, D. (2014). A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand. Sci. Total Environ. 468–469: 202–210. doi: 10.1016/j.scitotenv.2013.08.039.
46 46 Choi, M., Furlong, E.T., Werner, S.L., Pait, A.S., Lee, I.S., and Choi, H.G. (2014). Cimetidine, acetaminophen, and 1,7-dimethylxanthine, as indicators of wastewater pollution in marine sediments from Masan Bay, Korea. Ocean Sci. J. 49(3): 231–240. doi: 10.1007/s12601-014-0023-8.
47 47 Norambuena, L., Gras, N., and Contreras, S. (2013). Development and validation of a method for the simultaneous extraction