Biomolecules from Natural Sources. Группа авторов
Candida albicans-cell interactions activate innate immune defense in human palate epithelial primary cells via Nitric Oxide (NO) and beta-Defensin 2 (hBD-2). Cells 8 (7): 707.
82 82 Bondarenko, L.B. (2004). Collagen transformation in organism: modern state of the problem. Ukrainskii Biokhimicheskii Zhurnal 76 (5): 5–15.
83 83 Brodsky, B. and Persikov, A.V. (2005). Molecular structure of the collagen triple helix. Advances in Protein Chemistry 70: 301–339.
84 84 Gonzalez-Masis, J., Cubero-Sesin, J.M., Guerrero, S., Gonzalez-Camacho, S., Corrales-Urena, Y.R., Redondo-Gomez, C., Vega-Baudrit, J.R., and Gonzalez-Paz, R.J. (2020). Self-assembly study of type I collagen extracted from male Wistar Hannover rat tail tendons. Biomaterials Research 24 (1): 19.
85 85 Kandan, P.V., Balupillai, A., Kanimozhi, G., Khan, H.A., Alhomida, A.S., and Prasad, N.R. (2020). Opuntiol prevents photoaging of mouse skin via blocking inflammatory responses and collagen degradation. Oxidative Medicine and Cellular Longevity 2020: 5275178.
86 86 Hamberg, L., Walkenstrom, P., and Hermansson, A.M. (2002). Shaping of gelling biopolymer drops in an elongation flow. Journal of Colloid and Interface Science 252 (2): 297–308.
87 87 Buescher, J.M. and Margaritis, A. (2007). Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Critical Reviews in Biotechnology 27 (1): 1–19.
88 88 Dionisi, D., Majone, M., Miccheli, A., Puccetti, C., and Sinisi, C. (2004). Glutamic acid removal and PHB storage in the activated sludge process under dynamic conditions. Biotechnology and Bioengineering 86 (7): 842–851.
89 89 Inbaraj, B.S., Chiu, C.P., Ho, G.H., Yang, J., and Chen, B.H. (2008). Effects of temperature and pH on adsorption of basic brown 1 by the bacterial biopolymer poly(gamma-glutamic acid). Bioresource Technology 99 (5): 1026–1035.
90 90 Mooibroek, H., Oosterhuis, N., Giuseppin, M., Toonen, M., Franssen, H., Scott, E., Sanders, J., and Steinbuchel, A. (2007). Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Applied Microbiology and Biotechnology 77 (2): 257–267.
91 91 Obst, M., Sallam, A., Luftmann, H., and Steinbuchel, A. (2004). Isolation and characterization of gram-positive cyanophycin-degrading bacteria-kinetic studies on cyanophycin depolymerase activity in aerobic bacteria. Biomacromolecules 5 (1): 153–161.
92 92 Reinecke, F. and Steinbuchel, A. (2009). Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. Journal of Molecular Microbiology and Biotechnology 16 (1–2): 91–108.
93 93 Stubbe, J., Tian, J., He, A., Sinskey, A.J., Lawrence, A.G., and Liu, P. (2005). Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annual Review of Biochemistry 74: 433–480.
94 94 Muirhead, H. and Perutz, M. (1963). Structure of hemoglobin. A three-dimensional fourier synthesis of reduced human hemoglobin at 5.5 A resolution. Nature 199 (4894): 633–638.
95 95 Kendrew, J., Bodo, G., Dintzis, H., Parrish, R., Wyckoff, H., and Phillips, D. (1958). A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181 (4610): 662–666.
96 96 Goodenough, P.W. (1995). A review of protein engineeringfor the food industry. Molecular Biotechnology 4: 151–166.
97 97 Crisman, R.L. and Randolph, T.W. (2009). Refolding of proteins from inclusion bodies is favored by a diminished hydrophobic effect at elevated pressures. Biotechnology and Bioengineering 102 (2): 483–492.
98 98 Amara, A.A. (2015). An overview of the molecular and cellular interactions of some bioactive compounds. In: Biotechnology of Bioactive Compounds (ed. V.K. Gupta and M.G. Tuohy, co-ed. A. O’Donovan and M. Lohani), 527–554. John Wiley & Sons, Ltd.
99 99 Runbingh, D.N. (1997). Protein Engineering from a bioindustrial point of view. Current Opinion in Biotechnology 8: 417–422.
100 100 Schäfer, T., Kirk, O., Borchert, T.V., Fuglsang, C.C., Pedersen, S., Salmon, S., Olsen, H.S., Deinhammer, R., and Lund, H. (2002). Enzymes for technical applications. In: Biopolymers Online (ed. R. Fahnestock and S.R. Steinbüchel), 377–437. Wiley VCH.
101 101 Rao, M.B., Tanksale, A.M., Ghatge, M.S., and Deshpande, V.V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews 62 (3): 597–635.
102 102 Mozhaev, V.V. (1993). Mechanism-based strategies for protein thermostabilization. Trends in Biotechnology 11 (3): 88–95.
103 103 Krahe, M., Antranikian, G., and Mãrkl, H. (1996). Fermentation of extremophilic microorganisms. FEMS Microbiology Reviews 18 (2–3): 271–285.
104 104 Adams, M.W.W. and Kelly, R.M. (1998). Finding and using hyperthermophilic enzymes. Trends in Biotechnology 16 (8): 329–332.
105 105 Horikoshi, K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews 63 (4): 735–750.
106 106 Strausberg, S.L., Alexander, P.A., Gallagher, D.T., Gilliland, G.L., Barnett, B.L., and Bryan, P.N. (1995). Directed evolution of a subtilisin with calcium-independent stability. Nature Biotechnology 13 (7): 669–673.
107 107 Van Dyke, M.I., Lee, H., and Trevors, J.T. (1991). Applications of microbial surfactants. Biotechnology Advances 9 (2): 241–252.
108 108 Beer, H.D., Wohlfahrt, G., McCarthy, J.E.G., Schomburg, D., and Schmid, R.D. (1996). Analysis of the catalyic mechanism of a fungal lipase using computer-aided design and structural mutants. Protein Engineering, Design and Selection 9 (6): 507–517.
109 109 Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B., Norskov, L., Thim, L., and Menge, U. (1990). A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343 (6260): 767–770.
110 110 Martinelle, M., Holmquist, M., Clausen, I.G., Patkar, S., Svendsen, A., and Hult, K. (1996). The role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase. Protein Engineering, Design and Selection 9 (6): 519–524.
111 111 Rubingh, D.N. (1996). The influence of surfactants on enzyme activity. Current Opinion in Colloid & Interface Science 1 (5): 598–603.
112 112 Rubingh, D.N. (1997). Protein engineering from a bioindustrial point of view. Current Opinion in Biotechnology 8 (4): 417–422.
113 113 Shak, S., Capon, D.J., Hellmiss, R., Marsters, S.A., and Baker, C.L. (1990). Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proceedings of the National Academy of Sciences 87 (23): 9188–9192.
114 114 Breedveld, F.C. (2000). Therapeutic monoclonal antibodies. The Lancet 355 (9205): 735–740.
115 115 Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S., and Winter, G. (1986). Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321 (6069): 522–525.
116 116 Whittingham, J.L., Havelund, S., and Jonassen, I. (1997). Crystal structure of a prolonged-acting insulin with albumin-binding properties. Biochemistry 36 (10): 2826–2831.
117 117 Branningan, J.A. and Wilkinson, A.J. (2002). Protein engineering 20 years on. Nature Reviews Molecular Cell Biology 3: 964–970.
118 118 Baspinar, B. and Yardimci, H. (2020). Gluten-free casein-free diet for autism spectrum disorders: can it be effective in solving behavioural and gastrointestinal problems? Eurasian Journal of Medicine 52 (3): 292–297.
119 119 Jahromi, M., Niakousari, M., Golmakani, M.T., and Mohammadifar, M.A. (2020). Physicochemical and structural characterization of sodium caseinate based film-forming solutions and edible films as affected by high methoxyl pectin. International Journal of Biological Macromolecules 165 (Pt B): 1949–1959.
120 120 Pan, X., Mu, M., Hu, B., Yao, P., and Jiang, M. (2005). Micellization of casein-graft-dextran copolymer prepared through Maillard reaction. Biopolymers 81 (1): 29–38.
121 121