Principles in Microbiome Engineering. Группа авторов
One 6 (7): e22109.
26 26 Flint, H.J., Duncan, S.H., Scott, K.P., and Louis, P. (2007). Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol. 9 (5): 1101–1111.
27 27 Arumugam, M., Raes, J., Pelletier, E., et al. (2011). Enterotypes of the human gut microbiome. Nature 473 (7346): 174–180.
28 28 Grice, E.A. and Segre, J.A. (2011). The skin microbiome. Nat. Rev. Microbiol. 9 (4): 244–253.
29 29 Nakatsuji, T., Chiang, H., Jiang, S.B., et al. (2013). The microbiome extends to subepidermal compartments of normal skin. Nat. Commun. 4: 1431.
30 30 Selhub, E.M., Logan, A.C., and Bested, A.C. (2014). Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J. Physiol. Anthropol. 33 (1): 2.
31 31 Bassis, C.M., Tang, A.L., Young, V.B., and Pynnonen, M.A., et al. (2014). The nasal cavity microbiota of healthy adults. Microbiome 2: 27.
32 32 Ditz, B., Christenson, S., Rossen, J., et al. (2020). Sputum microbiome profiling in COPD: beyond singular pathogen detection. Thorax 75 (4): 338–344.
33 33 Segal, L.N., Alekseyenko, A.V., Clemente, J.C., et al. (2013). Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1 (1): 19.
34 34 Charlson, E.S., Bittinger, K., Haas, A.R., et al. (2011). Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care Med. 184 (8): 957–963.
35 35 Siddiqui, H., Lagersen, K., Nederbragt, A.J., et al. (2012). Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol. 12: 205–205.
36 36 Thomas‐White, K., Brady, M., Wolfe, A.J., and Mueller, E.R. (2016). The bladder is not sterile: history and current discoveries on the urinary microbiome. Curr. Bladder Dysfunct. Rep. 11 (1): 18–24.
37 37 Aagaard, K., Ma, J., Antony, K.M., et al. (2014). The placenta harbors a unique microbiome. Sci. Transl. Med. 6 (237): 237ra65.
38 38 Ronald, A. (2002). The etiology of urinary tract infection: traditional and emerging pathogens. Am. J. Med. 113 (Suppl. 1A): 14s–19s.
39 39 Soriano, F. and Tauch, A. (2008). Microbiological and clinical features of Corynebacterium urealyticum: urinary tract stones and genomics as the Rosetta Stone. Clin. Microbiol. Infect. 14 (7): 632–643.
40 40 Lee, J.W., Shim, Y.H., and Lee, S.J. (2009). Lactobacillus colonization status in infants with urinary tract infection. Pediatr. Nephrol. 24 (1): 135–139.
41 41 Latthe, P.M., Toozs‐Hobson, P., and Gray, J. (2008). Mycoplasma and ureaplasma colonisation in women with lower urinary tract symptoms. J. Obstet. Gynaecol. 28 (5): 519–521.
42 42 Gajer, P., Brotman, R.M., Bai, G., et al. (2012). Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4 (132): 132ra52.
43 43 Ott, S.J., Musfeldt, M., Wenderoth, D.F., et al. (2004). Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53 (5): 685–693.
44 44 Freire, M., Moustafa, A., Harkins, D.M., et al. (2020). Longitudinal study of oral microbiome variation in twins. Sci. Rep. 10 (1): 7954.
45 45 Turnbaugh, P.J., Hamady, M., Yatsunenko, T., et al. (2009). A core gut microbiome in obese and lean twins. Nature 457 (7228): 480–484.
46 46 Preidis, G.A. and Versalovic, J. (2009). Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 136 (6): 2015–2031.
47 47 Dewulf, E.M., Cani, P.D., Claus, S.P., et al. (2013). Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin‐type fructans in obese women. Gut 62 (8): 1112–1121.
48 48 Petschow, B., Doré, J., Hibberd, P., et al. (2013). Probiotics, prebiotics, and the host microbiome: the science of translation. Ann. N. Y. Acad. Sci. 1306 (1): 1–17.
49 49 Wieërs, G., Belkhir, L., Enaud, R., et al. (2020). How probiotics affect the microbiota. Front. Cell. Infect. Microbiol. 9: 454–454.
50 50 Mandel, D.R., Eichas, K., and Holmes, J. (2010). Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement. Altern. Med. 10: 1.
51 51 Hempel, S., Newberry, S., Ruelaz, A., et al. (2011). Safety of probiotics used to reduce risk and prevent or treat disease. Evid. Rep. Technol. Assess. (Full Rep.) 200: 1–645.
52 52 Hempel, S., Newberry, S.J., Maher, A.R., et al. (2012). Probiotics for the prevention and treatment of antibiotic‐associated diarrhea: a systematic review and meta‐analysis. JAMA 307 (18): 1959–1969.
53 53 Zarrinpar, A., Chaix, A., Yooseph, S., et al. (2014). Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20 (6): 1006–1017.
54 54 David, L.A., Maurice, C.F., Carmody, R.N., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 (7484): 559–563.
55 55 Shi, W., Qi, H., Sun, Q., et al. (2018). gcMeta: A global catalogue of metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res. 47 (D1): D637–D648.
56 56 Dhariwal, A., Chong, J., Habib, S., et al. MicrobiomeAnalyst ‐ a web‐based tool for comprehensive statistical, visual and meta‐analysis of microbiome data. Nucleic Acids Res. 45: W180–W188.
57 57 Patel, J.B. (2001). 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Mol. Diagn. 6 (4): 313–321.
58 58 Wang, Q., Garrity, G.M., Tiedje, J.M., et al. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 (16): 5261–5267.
59 59 Weisburg, W.G., Barns, S.M., Pelletier, D.A., et al. (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173 (2): 697–703.
60 60 Hasan, N.A., Young, B.A., Minard‐Smith, A.T., et al. (2014). Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS One 9 (5): e97699.
61 61 Segata, N., Waldron, L., Ballarini, A., et al. (2012). Metagenomic microbial community profiling using unique clade‐specific marker genes. Nat. Methods 9 (8): 811–814.
62 62 Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., et al. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1 (6): 6ra14.
63 63 Szakály, Z., Szente, V., Kövér, G., et al. (2012). The influence of lifestyle on health behavior and preference for functional foods. Appetite 58 (1): 406–413.
64 64 Zhao, J., Zhang, X., Liu, H., et al. (2019). Dietary protein and gut microbiota composition and function. Curr. Protein Pept. Sci. 20 (2): 145–154.
65 65 Fan, P., Liu, P., Song, P., et al. (2017). Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep. 7 (1): 43412.
66 66 Karen, L.J. (1999). Small intestinal bacterial overgrowth. Vet. Clin. North Am. Small Anim. Pract. 29 (2): 523–550.
67 67 Mayneris‐Perxachs, J., Bolick, D.T., Leng, J., et al. (2016). Protein‐ and zinc‐deficient diets modulate the murine microbiome and metabolic phenotype. Am. J. Clin. Nutr. 104 (5): 1253–1262.
68 68 Singh, R.K., Chang, H.W., Yan, D.I., et al. (2017). Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 15 (1): 73.
69 69 Reddy, B.S., Weisburger, J.H., and Wynder, E.L. (1975). Effects of high risk and low risk diets for colon carcinogenesis on fecal microflora and steroids in man. J. Nutr. 105 (7): 878–884.
70 70 Cotillard, A., Kennedy, S.P., Kong, L.C., et al. (2013). Dietary intervention impact on gut microbial gene richness. Nature 500 (7464):