Рефлексивные процессы и управление. Сборник материалов XI Международного симпозиума 16-17 октября 2017 г., Москва. Коллектив авторов
«Военно-Морская Академия», Санкт-Петербург) Рефлексивные игры противодействия
Аннотация. Рассматриваются рефлексивные игры при наличии признаков распознавания.
Ключевые слова: рефлексивные игры противодействия, признаки распознавания.
V. V. Karjukin, F. S. Chausov (Military educational and scientific center «Naval Academy»,St. Petersburg)
REFLEXIVE GAMES COUNTER
Abstract. Reflexivity games if there are signs of recognition.
Keywords: reflexive games, signs of recognition.
Задачи противодействия, рассматриваемые нами [1–3], характеризуются тем, что сначала делает выбор один из игроков, а второй игрок, чтобы не быть обреченным на поражение, должен разгадать выбор противника. Таковы, например, игра «нападение и оборона»[1], «игра в прятки»[4]. Изучение таких игр требует привлечения признаков распознавания стратегии противника. Данная задача требует привлечения теории рефлексивных игр [4].
Необходимые определения и обозначения. Рассмотрим игру, задаваемую матрицами:
где первая матрица есть матрица выигрышей игрока 𝒜, а вторая дает выигрыши игрока ℬ. Игрок 𝒜 выбирает строчку (𝑖 ∈ 1,2), игрок ℬ – столбец (𝑗 ∈ 1,2). После того как выбор сделан, игрок 𝒜 получает выигрыш 𝑎𝑖𝑗, а игрок ℬ – выигрыш 𝑏𝑖𝑗. Матрицы известны обоим игрокам. Данная игра является игрой с постоянной суммой 𝑎𝑖𝑗 + 𝑏𝑖𝑗 = 1, и ее равновесные смешанные стратегии одинаковы для обоих игроков
Приведем определения для признаков распознавания. Введем обобщенное обозначение S для некоторой стратегии игрока.
Признак α называется необходимым признаком для распознавания стратегии, если он принимает значение истина всякий раз, когда реализуется распознаваемая стратегия. В символах математической логики это отображается импликацией S → а и правилом вывода (распознавания) S,S → α/α: если противник выбрал стратегию S, то должен наблюдаться признак α.
Признак β называется достаточным признаком для распознавания стратегии, если из факта наблюдения признака β(логическая формула признака приняла значение истина) следует выбор стратегии S. В символах математической логики это отображается импликацией β → S и правилом вывода (распознавания) β/β → S/S: если наблюдается признак β, то противник выбрал стратегию S.
Признак γ является необходимым и достаточным для распознавания стратегии S, если утверждения γ и S одновременно истинны или одновременно ложны. С прикладной