Nitric Oxide in Plants. Группа авторов
productivity and abiotic stress tolerance – current trends and future perspectives. Journal of Plant Physiology 231: 415–433.
55 Pagnussat, G.C., Lanteri, M.L., and Lamattina, L. (2003). Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiology 132: 1241–1248.
56 Pagnussat, G.C., Lanteri, M.L., Lombardo, M.C. et al. (2004). Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiology 135: 279–286.
57 Palavan-Unsal, N. and Arisan, D. (2009). Nitric oxide signalling in plants. The Botanical Review 75: 203–229.
58 Prakash, V., Singh, V.P., Tripathi, D.K. et al. (2021). Nitric oxide (NO) and salicylic acid (SA): a framework for their relationship in plant development under abiotic stress. Plant Biology 23: 39–49.
59 Probert, R.J. (2000). The role of temperature in the regulation of seed dormancy and germination. Seeds: The Ecology of Regeneration in Plant Communities 2: 261–292.
60 Rodríguez-Serrano, M., Romero-Puertas, M.C., Pazmiño, D.M. et al. (2009). Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiology 150: 229–243.
61 Rőszer, T. (2012). Nitric oxide synthesis in leaf peroxisomes and in plant-type mitochondria. In: The Biology of Subcellular Nitric Oxide, 67–80. Dordrecht, the Netherlands: Springer.
62 Santisree, P., Bhatnagar-Mathur, P., and Sharma, K.K. (2015). NO to drought-multifunctional role of nitric oxide in plant drought: do we have all the answers? Plant Science: An International Journal of Experimental Plant Biology 239: 44–55.
63 Santolini, J., André, F., Jeandroz, S. et al. (2017). Nitric oxide synthase in plants: where do we stand? Nitric Oxide 63: 30–38.
64 Shams, M., Ekinci, M., Ors, S. et al. (2019). Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiology and Molecular Biology of Plants 25: 1149–1161.
65 Sharma, S.S. and Dietz, K.-J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science 14: 43–50.
66 Simontacchi, M., Galatro, A., Ramos-Artuso, F. et al. (2015). Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Frontiers in Plant Science 6: 977.
67 Singh, H.P., Batish, D.R., Kaur, G. et al. (2008). Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environmental and Experimental Botany 63: 158–167.
68 Singh, R., Singh, S., Parihar, P. et al. (2016). Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes. Frontiers in Plant Science 7.
69 Solórzano, E., Corpas, F.J., González-Gordo, S. et al. (2020). Reactive oxygen species (ROS) metabolism and nitric oxide (NO) content in roots and shoots of rice (Oryza sativa L.) plants under arsenic-induced stress. Agronomy 10: 1014.
70 Suzuki, N., Rivero, R.M., Shulaev, V. et al. (2014). Abiotic and biotic stress combinations. F1000 Research 203: 32–43.
71 Syed Nabi, R., Tayade, R., Hussain, A. et al. (2019). Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental and Experimental Botany 161: 120–133.
72 Tewari, R.K., Prommer, J., and Watanabe, M. (2013). Endogenous nitric oxide generation in protoplast chloroplasts. Plant Cell Reports 32: 31–44.
73 Tian, X. and Lei, Y. (2006). Nitric oxide treatment alleviates drought stress in wheat seedlings. Biologia Plantarum 50: 775–778.
74 Tossi, V., Lamattina, L., and Cassia, R. (2009). An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytologist 181: 871–879.
75 van Zelm, E., Zhang, Y., and Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71: 403–433.
76 Vanhaelewyn, L., Prinsen, E., Van Der Straeten, D. et al. (2016). Hormone-controlled UV-B responses in plants. Journal of Experimental Botany 67: 4469–4482.
77 Vaultier, M.-N. and Jolivet, Y. (2015). Ozone sensing and early signaling in plants: an outline from the cloud. Environmental and Experimental Botany 114: 144–152.
78 Verma, K., Mehta, S.K., and Shekhawat, G.S. (2013). Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in Brassica juncea: cross-talk between ROS, NO and antioxidant responses. Biometals 26: 255–269.
79 Verma, V., Ravindran, P., and Kumar, P.P. (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16: 86.
80 Vishwakarma, A., Wany, A., Pandey, S. et al. (2019). Current approaches to measure nitric oxide in plants. Journal of Experimental Botany 70: 4333–4343.
81 Wang, X., Mao, Z., Zhang, J. et al. (2019). Osmolyte accumulation plays important roles in the drought priming induced tolerance to post-anthesis drought stress in winter wheat (Triticum aestivum L.). Environmental and Experimental Botany 166: 103804.
82 Wang, Z., Ma, R., Zhao, M. et al. (2020). NO and ABA interaction regulates tuber dormancy and sprouting in potato. Frontiers in Plant Science 11: 103804.
83 Wang, Z., Straub, D., Yang, H. et al. (2014). The regulatory network of cluster-root function and development in phosphate-deficient white lupin (Lupinus albus) identified by transcriptome sequencing. Physiologia Plantarum 151: 323–338.
84 Wilson, I.D., Neill, S.J., and Hancock, J.T. (2008). Nitric oxide synthesis and signaling in plants. Plant, Cell & Environment 31: 622–631.
85 Xiong, J., An, L., Lu, H. et al. (2009). Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230: 755–765.
86 Xu, M., Zhu, Y., Dong, J. et al. (2012). Ozone induces flavonol production of Ginkgo biloba cells dependently on nitrate reductase-mediated nitric oxide signaling. Environmental and Experimental Botany 75: 114–119.
87 Zeppel, M.J., Harrison, S.P., Adams, H.D. et al. (2015). Drought and resprouting plants. The New Phytologist 206: 583–589.
88 Zhang, J., Li, D., Wei, J. et al. (2019). Melatonin alleviates aluminum-induced root growth inhibition by interfering with nitric oxide production in Arabidopsis. Environmental and Experimental Botany 161: 157–165.
89 Zhao, H., Jin, Q., Wang, Y. et al. (2016). Effects of nitric oxide on alleviating cadmium stress in Typha angustifolia. Plant Growth Regulation 78: 243–251.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.