Industry 4.0 Vision for the Supply of Energy and Materials. Группа авторов

Industry 4.0 Vision for the Supply of Energy and Materials - Группа авторов


Скачать книгу
rel="nofollow" href="#ulink_c958382c-8ea1-5750-b731-2acff42bc06f">155 Ericsson. (Jul 2020). Private networks for industries. https://www.ericsson.com/en/networks/offerings/mission-critical-private-networks/private-networks.

      156 156 Bockelmann, C., Pratas, N., Nikopour, H., Au, K., Svensson, T., Ste- Fanovic, C., Popovski, P., and Dekorsy, A. (2016). Massive machine-type communications in 5G: Physical and MAC-layer solutions. IEEE Commun. Mag. 54 (9): 59–65.

      157 157 ITU-R. (Sep 2015). IMT Vision–Framework and overall objectives of the future development of IMT for 2020 and beyond. Recommendation ITU-R M.2083-0, International Telecommunication Union (ITU). https://www.itu.int/dms_pubrec/itu-r/rec/rn/R-REC-M.2083-0-201509-IllPDF-E.pdf.

      158 158 3GPP. (Mar 2019). Study on physical layer enhancements for NR ultra reliable and low latency case (URLLC) (Release 16). TR 38-824, 3rd generation partnership project (3GPP). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3498

      159 159 Oleshchuk, V. and Fensli, R. (2011). Remote patient monitoring within a future 5G infrastructure. Wirel. Pers. Commun. 57 (3): 431–439.

      160 160 Chen, H., Abbas, R., Cheng, P., Shirvanimoghaddam, M., Hardjawana, W., Bao, W., Li, Y., and Vucetic, B. (2018). Ultra-reliable low latency cellular networks: Use cases, challenges and approaches. IEEE Commun. Mag. 56 (12): 119–125.

      161 161 Yilmaz, O.N.C., Wang, Y.E., Johansson, N.A., Brahmi, N., Ashraf, S.A., and Sachs, J. (2015). Analysis of ultra-reliable and low-latency 5g communication for a factory automation use case. In: 2015 IEEE International Conference on Communication Workshop (ICCW), 11901195.

      162 162 Farkas, J., Varga, B., Miklos, G., and Sachs, J. (Aug 2019). 5G-TSN integration meets networking requirements for industrial automation. Ericsson. https://www.ericsson.com/4a4cb4/assets/local/reports-papers/ericsson-technology-review/docs/2019/5g-tsn-integration-for-industrial-automation.pdf.

      163 163 O’Connell, E., Moore, D., and Newe, T. (Jun 2020). Challenges associated with implementing 5G in manufacturing. Telecom 1 (1): 48–67.

      164 164 Thales. (Dec 2020). Introducing 5G technology and networks (speed, use cases and rollout). https://www.thalesgroup.com/en/markets/digital-identity-and-security/mobile/inspired/5G.

      165 165 Ericsson.(Sep 2019). Ushering in a better connected future. https://www.ericsson.com/en/about-us/company-facts/ericsson-worldwide/india/authored-articles/ushering-in-a-better-connected-future.

      166 166 GSMA. (Feb 2020) 5G implementation guidelines: NSA Option 3. https://www.gsma.com/futurenetworks/wp-content/uploads/2019/03/5G-Implementation-Guidelines-NSA-Option-3-v2.1.pdf.

      167 167 GSMA. (Oct 2020). 5G IoT Private and dedicated networks for Industry 4.0. https://www.gsma.com/iot/wp-content/uploads/2020/10/2020-10-GSMA-5G-IoT-Private-and-Dedicated-Networks-for-Industry-4.0.pdf.

      168 168 Qualcomm. Deploying 5G NR mmWave to unleash the full 5G’s potential. https://www.qualcomm.com/media/documents/files/deploying-mmwave-to-unleash-5g-s-full-potential.pdf.

      169 169 Bockelmann, C., Pratas, N.K., Wunder, G., Saur, S., Navarro, M., Gregoratti, D., Vivier, G., De Carvalho, E., Ji, Y., Stefanovic, C., et al. (2018). Towards massive connectivity support for scalable mMTC communications in 5G networks. IEEE Access 6: 28969–28992.

      170 170 Glabowski, M., Hanczewski, S., Stasiak, M., Weis- Senberg, M., Zwierzykowski, P., and Bai, V. (2020). Traffic modeling for industrial Internet of things (IIoT) networks. In: Image Processing and Communications (ed. M. Choras and R.S. Choras), 264–271. Springer International Publishing.

      171 171 Candell, R., Zimmerman, T., and Stouffer, K. (Dec 2015). An industrial control system cybersecurity performance testbed. NIST Interagency/Internal Report (NISTIR) 8089, US Department of Commerce, National Institute of Standards and Technology (NIST). https://www.nist.gov/publications/industrial-control-system-cybersecurity-performance-testbed.

      172 172 Wetzker, U., Splitt, I., Zimmerling, M., Boano, C.A., and Romer, K. (Aug 2016). Troubleshooting wireless coexistence problems in the industrial Internet of things. In: 2016 IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing and Applications for Business Engineering (DCABES).

      173 173 Liu, Y., and Moayeri, N. (Sep 2017). Wireless Activities in the 2 GHz Radio Bands in Industrial Plants. Technical Note (NIST TN) 1972, US Department of Commerce, National Institute of Standards and Technology (NIST). https://www.nist.gov/publications/wireless-activities-2-ghz-radio-bands-industrial-plants.

      174 174 Lien, S., Tseng, C., Chen, K., and Su, C. (2010). Cognitive radio resource management for QoS guarantees in autonomous femtocell networks. In: 2010 IEEE International Conference on Communications, 1–6.

      175 175 Chiwewe, T.M., Mbuya, C.F., and Hancke, G.P. (2015). Using cognitive radio for interference-resistant industrial wireless sensor networks: An overview. IEEE Trans. Industr. Inform. 11 (6): 1466–1481.

      176 176 ODVA. EtherNet/IP™. ODVA, Inc. (Open DeviceNet


Скачать книгу