Poly(lactic acid). Группа авторов

Poly(lactic acid) - Группа авторов


Скачать книгу
illustration of representative structure of triblock copolymer based on LLA and PEG [35]."/>

      LA has also been reacted to poly(propylene glycol)diglycidyl ether (PPGDGE380) using Sn(Oct)2 as catalyst. The resultant copolymers showed a range of properties, from weak elastomeric property to tougher thermoplastics, and it was tuned by the feed ratio of LLA and PPGDGE380. The obtained copolymers were found to be more hydrophilic than neat PLA [98].

Schematic illustration of the synthesis of ABA triblock copolymer using aluminum triisopropoxide as a catalyst [27]. Schematic illustration of synthetic route for the preparation of cholesterol–PEG–PDLA [37].

      Triblock comb‐like copolymer containing fluorophilic, lipophilic, and hydrophilic units was obtained by first ROP of LA with polyethylene glycol methyl ether to form diblock copolymer, which was subsequently converted to macroinitiator to promote atom transfer radical polymerization (ATRP) of heptadecafluorodecyl methacrylate (FMA). Small‐angle neutron scattering of poly(PEG‐b‐LA‐b‐FMA) bearing distinct numbers of perfluorinated pendant chains (5–20) confirmed existence of an outer shell of fluorinated polymer, which led to the formation of a nanocapsule morphology [99].

      Stupp et al. [100] synthesized low molar mass oligomers of cholesterol‐(L‐lactide) n with n ≤ 20 in bulk conditions at 150°C. The cholesterol end group induced liquid crystalline properties and ensured self‐assembly of the oligomers, which may be beneficial for interaction with the cells and provide opportunities to introduce additional bioactive substituents.

      PEG‐grafted PLA is usually obtained by post‐polymerization modification process via typical Huisgen cycloaddition reaction [105], initially D,L‐lactide is polymerized in the presence of allyl glycidyl ether followed by subsequent PEG functionalization [115]. PEG‐grafted PLA can be synthesized either based on the condensation of hydroxy acids with PEG side chains [116], or by typical ROP reaction of PEG‐grafted lactide analogues [117].

Schematic illustration of synthesis of protected and deprotected block copolymers. Schematic illustration of star-shaped copolymers of LA [119].

      4.2.3 δ‐Valerolactone and β‐Butyrolactone

      There has not been much research considering copolymerization of LA with δ‐valerolactone (VL) and β‐butyrolactone (BL). Anionic block copolymerization of VL and LLA in the presence of potassium methoxide in THF at 20°C gave diblock copolymers with expected compositions and molar mass [49]. Slight racemization of LLA was observed during polymerization due to transesterification reactions.

      Block copolymers of LA and BL have been prepared by first preparing a hydroxyl‐terminated poly(β‐butyrolactone) (PBL). The ROP of (R)‐BL or (RS)‐BL with distannoxanes as catalyst in the presence of 1,4‐butanediol as initiator gave optically active poly[(R)‐BL] or atactic poly[(RS)‐BL] with secondary hydroxyl chain ends and oxytetramethylene units in the backbone. These polymers may be used to initiate the copolymerization of LA at the chain ends and form block copolymers. The optically active poly[(R)‐BL] was found to be brittle, whereas atactic poly[(RS)‐BL] showed elastomeric properties. Thus, ROP of [RS]‐βBL with LLA could be used to prepare elastomeric copolymers, which may alleviate brittle behavior of pristine PLLA. However, utility of Sn(IV) compounds is known as active transesterification catalysts and may cause scrambling of monomer units when LLA is used as a comonomer. Therefore, a two‐stage polymerization was carried out. In the first step, telechelic poly[(RS)‐BL] in the molar mass range of 5000–12,000 g/mol was prepared at 100°C by maintaining the desired molar ratios of (RS)‐BL and 1,4‐butanediol and using Sn(IV) as catalyst. In the second stage, the desired ratio of hydroxyl‐terminated poly[(RS)‐BL] and LLA monomer was added and Sn(Oct)2 was used as a catalyst and polymerization is carried out at 160°C [47]. Hori et al. [45] have also presented research about the synthesis of random copolymers using LLA and (R)‐BL.

      4.2.4 ε‐Caprolactone

      Copolymerization of LA and CL has been extensively established [51–58]. Random copolymers of DLLA (r 1 = 10.8) and CL (r 2 = 0.37) were prepared by using lanthanide halides as initiators [55]. High molar mass copolymers


Скачать книгу