Properties for Design of Composite Structures. Neil McCartney

Properties for Design of Composite Structures - Neil McCartney


Скачать книгу
Subscript r z Superscript m Baseline left-parenthesis infinity comma z right-parenthesis equals 0 comma 3rd Row sigma Subscript r r Superscript m Baseline left-parenthesis a comma z right-parenthesis equals sigma Subscript r r Superscript f Baseline left-parenthesis a comma z right-parenthesis comma 4th Row sigma Subscript r z Superscript m Baseline left-parenthesis a comma z right-parenthesis equals sigma Subscript r z Superscript f Baseline left-parenthesis a comma z right-parenthesis comma 5th Row u Subscript r Superscript m Baseline left-parenthesis a comma z right-parenthesis equals u Subscript r Superscript f Baseline left-parenthesis a comma z right-parenthesis comma 6th Row u Subscript z Superscript m Baseline left-parenthesis upper R comma z right-parenthesis equals u Subscript z Superscript f Baseline left-parenthesis upper R comma z right-parenthesis period EndLayout right-brace"/>(4.28)

      On differentiating the displacement field, it follows, on using (2.139) on setting uθ≡0, that.

      It follows directly from (4.17), (4.30) and (4.32) that for fibre and matrix

      On subtracting (4.14) and (4.15), it follows that for fibre and matrix

      epsilon Subscript theta theta Superscript m Baseline minus epsilon Subscript r r Superscript m Baseline equals StartFraction 1 Over 2 mu Subscript m Baseline EndFraction left-parenthesis sigma Subscript theta theta Superscript m Baseline minus sigma Subscript r r Superscript m Baseline right-parenthesis period(4.35)

      Relations (4.29) and (4.31) then assert that

      On substituting (4.33) and (4.34) into the equilibrium equations (4.20)–(4.22) it follows that

      On integrating (4.38)1 subject to the condition (4.28)1,

      and from (4.36) it follows that

      On integrating (4.37)1 using (4.39) together with the continuity condition (4.28)3

      and from (4.36) it follows that