Nanovaccinology as Targeted Therapeutics. Группа авторов
structure on intracellular nucleic acid delivery via polymeric nanoparticles. J. Control. Release: Off. J. Controlled Release Soc., 219, 488–499, 2015.
14. Corbo, C., Molinaro, R., Tabatabaei, M., Farokhzad, O.C., Mahmoudi, M., Personalized protein corona on nanoparticles and its clinical implications. Biomater. Sci., 5, 378–387, 2017.
15. Corbo, C. et al., The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (London, England), 11, 81–100, 2016.
16. Fang, R.H., Kroll, A.V., Gao, W., Zhang, L., Cell membrane coating nanotechnology. Adv. Mater. (Deerfield Beach, Fla.), 30, e1706759, 2018.
17. Gao, W. et al., Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater. (Deerfield Beach, Fla.), 25, 3549–3553, 2013.
18. Vijayan, V., Uthaman, S., Park, I.K., Cell Membrane-camouflaged nanoparticles: A promising biomimetic strategy for cancer theragnostics. Polymers, 10, 1–25, 2018.
19. Zhao, L. et al., Nanoparticle vaccines. Vaccine, 32, 327–337, 2014.
20. Laval, J.M., Mazeran, P.E., Thomas, D., Nanobiotechnology and its role in the development of new analytical devices. Analyst, 125, 29–33, 2000.
21. Schneider, C.S. et al., Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv., 3, e1601556, 2017.
22. Irvine, D.J., Hanson, M.C., Rakhra, K., Tokatlian, T., Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev., 115, 11109–11146, 2015.
23. Szeto, G.L. and Lavik, E.B., Materials design at the interface of nanoparticles and innate immunity. J. Mater. Chem. B, 4, 1610–1618, 2016.
24. Chattopadhyay, S., Chen, J.Y., Chen, H.W., Hu, C.J., Nanoparticle Vaccines adopting virus-like features for enhanced immune potentiation. Nanotheranostics, 1, 244–260, 2017.
25. Pachioni-Vasconcelos, J. de A., et al., Nanostructures for protein drug delivery. Biomater. Sci., 4, 205–218, 2016.
26. Fredriksen, B.N. and Grip, J., PLGA/PLA micro- and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of Atlantic salmon (Salmo salar L.). Vaccine, 30, 656–667, 2012.
27. Zhu, M., Wang, R., Nie, G., Applications of nanomaterials as vaccine adjuvants. Hum. Vaccin. Immunother., 10, 2761–2774, 2014.
28. Ghiringhelli, F. et al., Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med., 15, 1170–1178, 2009.
29. He, Y., Hara, H., Núñez, G., Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci., 41, 1012–1021, 2016.
30. Pati, R., Shevtsov, M., Sonawane, A., Nanoparticle vaccines Against infectious diseases. Front. Immunol., 9, 2224, 2018.
31. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery, 4, 145–160, 2005.
32. Mamo, T. and Poland, G.A., Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine, 30, 6609–6611, 2012.
33. Kushnir, N., Streatfield, S.J., Yusibov, V., Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine, 31, 58–83, 2012.
34. Plummer, E.M. and Manchester, M., Viral nanoparticles and virus-like particles: Platforms for contemporary vaccine design. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 3, 174–196, 2011.
35. Roldão, A., Mellado, M.C., Castilho, L.R., Carrondo, M.J., Alves, P.M., Virus-like particles in vaccine development. Expert Rev. Vaccines, 9, 1149–1176, 2010.
36. Chen, Y.-C., Cheng, H.-F., Yang, Y.-C., Yeh, M.-K., Nanotechnologies applied in biomedical vaccines. IntechOpen, J. Pharm. Pharmacol., 5, 85–107, 2017.
37. Kamaly, N., Xiao, Z., Valencia, P.M., Radovic-Moreno, A.F., Farokhzad, O.C., Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev., 41, 2971–3010, 2012.
38. Shae, D., Postma, A., Wilson, J.T., Vaccine delivery: where polymer chemistry meets immunology. Ther. Deliv., 7, 193–196, 2016.
39. Acharya, S. and Sahoo, S.K., PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 63, 170–183, 2011.
40. Mahapatro, A. and Singh, D.K., Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnol., 9, 55, 2011.
41. Danhier, F. et al., PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release: Official Journal of the Controlled Release Society, 161, 505–522, 2012.
42. Silva, A.L., Soema, P.C., Slütter, B., Ossendorp, F., Jiskoot, W., PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum. Vaccin. Immunother., 12, 1056–1069, 2016.
43. Getts, D.R., Shea, L.D., Miller, S.D., King, N.J., Harnessing nanoparticles for immune modulation. Trends Immunol., 36, 419–427, 2015.
44. Santos, D.M. et al., PLGA nanoparticles loaded with KMP-11 stimulate innate immunity and induce the killing of Leishmania. Nanomed.: Nanotechnol. Biol. Med., 9, 985–995, 2013.
45. Sawaengsak, C., Mori, Y., Yamanishi, K., Mitrevej, A., Sinchaipanid, N., Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS PharmSciTech, 15, 317–325, 2014.
46. Dhakal, S. et al., Mucosal immunity and protective efficacy of intranasal inactivated influenza vaccine is improved by chitosan nanoparticle delivery in Pigs. Front. Immunol., 9, 934, 2018.
47. Lynn, G.M. et al., In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol., 33, 1201–1210, 2015.
48. Carroll, E.C. et al., The vaccine Adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity, 44, 597–608, 2016.
49. Tahamtan, A. et al., Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J. Biomed. Sci., 21, 69, 2014.
50. Sawaengsak, C. et al., Intranasal chitosan-DNA vaccines that protect across influenza virus subtypes. Int. J. Pharm., 473, 113–125, 2014.
51. Ye, T. et al., M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine. Vaccine, 32, 4457–4465, 2014.
52. Zhao, K. et al., Enhancing mucosal immune response of newcastle disease virus DNA vaccine using N-2-Hydroxypropyl trimethylammonium chloride chitosan and N, O-carboxymethyl chitosan nanoparticles as delivery carrier. Mol. Pharmaceutics, 15, 226–237, 2018.
53. Zhao, K. et al., Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Delivery, 24, 1574–1586, 2017.
54. Valero, Y. et al., An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection. Dev. Comp. Immunol., 65, 64–72, 2016.
55. Vela-Ramirez, J.E. et al., Safety and biocompatibility of carbohydrate-functionalized polyanhydride