Общая теория поля и структура вселенной. А. Т. Серков

Общая теория поля и структура вселенной - А. Т. Серков


Скачать книгу
перехода зависят от индивидуальных особенностей вещества, хотя общая закономерность, задаваемая переходом от эллиптических орбит к менее энергоёмким круговым должна сохраняться во всех случаях.

      Теперь продемонстрируем действие рассмотренных законов в широком диапазоне атомных параметров. Начнём с крайних случаёв с самой коротковолновой серии рентгеновского излучения и строения атома урана, обладающего наибольшей атомной массой.

      Рентгеновское излучение α1 в серии K атома урана имеет самую короткую длину волны 0,01259 нм. Поэтому можно полагать, что такая длина волны (частота) соответствует минимальному квантовому числу n = 1 и радиусу орбиты, то есть в соответствии с уравнением (4) для первой орбиты k = r. В свою очередь, зная длину волны λ, рассчитываем радиус по уравнениям 3-го закона Кеплера, которые применительно к атомным системам имеют вид:

      λ= 2πcr1,5/(gmd)0,5, (9)

      ν = (gmd)0,5/2πr1,5, (10)

      где λ- длина волны, ν- частота излучения, с– скорость света, r– радиус орбиты, g– константа микро гравитации, m– атомная масса, d– дальтон.

      Подставив в уравнение (9) приведенные выше значения величин, получим радиус первой орбиты атома урана, с которой происходит рентгеновское излучение серии Kα1, r = 0,069 пм. Радиусы других орбит рассчитываем по уравнению Бора (4) умножением на квадрат соответствующего орбите квантового числа, см. таблицу 1. Так, например, для следующей рентгеновской L серии при n = 2 получена длина волны λcal= 0,1011 нм при справочном значении λ exp = 0,07479 ни, а для М серии при n = 3 соответственно λcal = 0,3412 нм и λexp = 0,3329 нм. Для других серий при n = 4, 5, 6 и 7 также получено хорошее совпадение расчётных и экспериментальных данных, см. столбцы 6 и 7 в таблице 1.

      Таблица1. Параметры атома урана.

      Удовлетворительное совпадение также наблюдается для расчетных и экспериментальных значений атомных радиусов, характеризующих длину химических связей и размер атома, см. столбцы 2 и 3. Рассчитанные по уравнениям (1) и (2) длины связей равны 89,42 и 104,9 пм. Экспериментальные значения почти совпадают с этими величинами и равны соответственно 89 и 104 пм. Расчётная длина ковалентной связи равна 139,7 пм, экспериментальное значение 142 пм. Наконец, расчётный радиус атома урана 152,4 пм практически совпадает с экспериментальной величиной 153 пм.

      Достоверность модели строения атома урана подтверждается совпадением частот излучения, рассчитанных по уравнению Бальмера-Ридберга и частот рассчитанных по уравнению 3-го закона Кеплера, в котором использовали радиус r, рассчитанный по уравнению Бора (4).

      Уравнение Бальмера-Ридберга выражает изменение частот излучения в зависимости от двух рядов квантовых чисел ni и nj:

      ν = cR(1/ni2 -1/nj2),


Скачать книгу