Мультисенсорный музей: междисциплинарный взгляд на осязание, звук, запах, память и пространство. Нина Левент

Мультисенсорный музей: междисциплинарный взгляд на осязание, звук, запах, память и пространство - Нина Левент


Скачать книгу
такой образ, который может быть закодирован и извлечен обратно множеством сенсорных систем и который сохраняет информацию о модальности входящих импульсов[74]. Мультисенсорная гипотеза подтверждается исследованиями об эффективных связях[75] этих модальностей. Такой результат был получен на основе данных функциональной магнитно-резонансной томографии (фМРТ), указывающих на существование восходящих (возникающих в первичных сенсорных областях мозга) проекций от первичной соматосенсорной коры к латеральной затылочной коре[76], а также электрофизиологических данных, показывающих быстрое распространение активности также от первичной соматосенсорной к латеральной затылочной коре во время тактильного распознавания формы[77]. Однако исследователи[78] также нашли доказательства существования проекций обратной направленности (возникающих в областях, участвующих в более высоких когнитивных функциях, таких как создание мысленных образов). Это указывает на то, что репрезентации форм объектов в латеральной затылочной коре могут быть доступны как восходящим, так и нисходящим проекциям.

Предварительная модель создания визуального образа в процессе тактильного восприятия и репрезентации формы

      Важной целью мультисенсорных исследований является моделирование процессов, лежащих в основе визуально-тактильного представления объектов. Для этого мы исследовали кортикальные сети, участвующие в процессе создания визуального образа и тактильном восприятии как знакомых, так и незнакомых объектов[79]. В результате мы можем очертить предварительную модель участия визуальных образов в тактильном восприятии формы на основании исследований, о которых шла речь ранее.

      В одном эксперименте по созданию визуальных образов[80] от участников требовалось слушать пары слов и решать, какую форму имеют объекты, обозначенные этими словами, – похожую или разную (например, «змея – веревка» и «ложка – вилка» соответственно). Таким образом, в отличие от более ранних исследований, участники выполняли задания, требующие создания визуальных образов, успешность выполнения которых можно было отследить. В качестве дополнительного задания по тактильному распознаванию предметов участникам было предложено определить аналогичным образом, с помощью ощупывания правой рукой, – одинаковые или разные формы имеют незнакомые им ранее объекты. Каждая из этих задач сопровождалась соответствующей контрольной задачей[81]. Нас особенно интересовали области мозга, которые были активны как при визуальном, так и при тактильном распознавании формы, и то, была ли связь между уровнем активности в этих пересекающихся зонах при выполнении двух задач. Таких зон было всего четыре, и только одна из них показала значимую положительную корреляцию уровней активности при выполнении первой и второй задач. Таким образом, эти результаты привели нас к довольно слабым доказательствам


Скачать книгу

<p>74</p>

Sathian K. (2004) Modality, quo vadis?: Comment // Behavioral & Brain Sciences, № 27: 413–414.

<p>75</p>

В исследованиях с применением фМРТ можно обнаружить большое количество статистически значимых связей активности одного отдела мозга с другим, но на основании наличия корреляции невозможно установить причину этой связи. Особую ценность представляют поиски эффективных связей, которые отражают взаимное влияние отделов мозга друг на друга, и стоящие за ними нейрональные связи. Такие исследования требуют специального дизайна. О некоторых из них авторы статьи рассказывают дальше (прим. науч. ред.).

<p>76</p>

Peltier S., Stilla R., Mariola E., LaConte S., Hu X., Sathian K. (2007) Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception // Neuropsychologia, № 45: 476–483; Deshpande G., Hu X., Stilla R., Sathian K. (2008) Effective connectivity during haptic perception: A study using Granger causality analysis of functional magnetic resonance imaging data // NeuroImage, № 40: 1807–1814.

<p>77</p>

Lucan J.N., Foxe J.J., Gomez-Ramirez M., Sathian K., Molholm S. (2010) Tactile shape discrimination recruits human lateral occipital complex during early perceptual processing // Human Brain Mapping, № 31: 1813–1821.

<p>78</p>

Peltier S. et al. (2007); Deshpande G. et al. (2008).

<p>79</p>

Deshpande G., Hu X., Lacey S., Stilla R., Sathian K. (2010) Object familiarity modulates effective connectivity during haptic shape perception // NeuroImage, № 49: 1991–2000; Lacey S., Flueckiger P., Stilla R., Lava M., Sathian K. (2010) Object familiarity modulates the relationship between visual object imagery and haptic shape perception // NeuroImage, № 49: 1977–1990.

<p>80</p>

Lacey S. et al. (2010).

<p>81</p>

См. подробнее: Lacey S. et al. (2010).