Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей. Алексей Семихатов

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Семихатов


Скачать книгу
задает орбиту, потому что вся картинка на рис. 2.4 вращается как единое целое; это буквально точка только для наблюдателя, который сам обращается вокруг общего центра масс – скажем, сидя на Земле, если мы говорим о системе Солнце – Земля. И еще я забыл сказать, что вся схема работает хорошо, когда орбиты в системе двух тел близки к круговым. И конечно, помещать на эти орбиты следует тела малой массы; такое условие означает, что притяжение этого третьего тела не должно оказывать обратного воздействия на два больших тела (Солнце и Землю в данном случае). И наконец, пояснения требует слово «поместить»: все тела, помещенные в какую-либо точку Лагранжа, должны быть разогнаны до необходимой скорости для движения по орбите, которую описывает выбранная точка Лагранжа, когда конфигурация, изображенная рис. 2.4, вращается как целое. Этого разгона совместное тяготение двух больших тел совсем никак не обеспечивает – но оно обеспечивает ровно такое притяжение к центру вращения, при котором тела, получившие подходящую скорость, могут оставаться на этой орбите.

*****

      Гало-орбиты. Идея высадиться на обратной стороне Луне в начале 1970-х реализована не была, Сернан и Шмитт прилунились на «Аполлоне-17» на видимой стороне Луны и три дня ездили там на ровере; но китайский аппарат «Чанъэ-4», который в самом начале 2019 г. доставил луноход «Юйту-2» на обратную сторону Луны (рис. 2.5), вел связь через спутник «Цюэцяо», заблаговременно отправленный к той самой точке L2 системы Земля – Луна, в каких-то 64 500 км за Луной. Здесь наконец пора дать обещанное уточнение про ретрансляционный спутник. Каждый раз, когда мы слышим про космический аппарат «в точке Лагранжа», надо представлять себе что-то вроде орбиты вокруг точки Лагранжа.

      Рис. 2.5. Луноход «Юйту-2» на обратной стороне Луны. И его, и Землю постоянно видит ретрансляционный спутник, находящийся вблизи точки Лагранжа L2 системы Земля – Луна

      Дело в том, что с точками Лагранжа все-таки есть проблема: L1, L2 и L3 неустойчивы[30]. Карандаш может некоторое время стоять вертикально на вашем столе, но рано или поздно упадет по той или иной причине, например если вы откроете окно или из-за какой-то еще флуктуации. Для космического аппарата, помещенного в точку Лагранжа, причин для подобных флуктуаций – нарушений точного баланса положения, скорости и сил притяжения – хоть отбавляй (притяжение других тел в Солнечной системе оказывает воздействие, орбиты отличаются от круговых, скорость оказывается не идеально точной для пребывания в точке Лагранжа и т. д.). В результате аппарат начинает «сползать» – удаляться от математически определенной точки Лагранжа. Хотя события и будут развиваться намного медленнее, чем при опрокидывании карандаша, неустойчивость означает, что по мере сползания на космический аппарат действуют силы, уводящие его только дальше[31]. Поэтому начавшееся по любой причине сползание не исправится само; если там оказался астероид, то он со временем сдвинется куда-то прочь, а если


Скачать книгу

<p>30</p>

Это жаргон, которому непросто сопротивляться. Имеется в виду неустойчивость орбиты тела, помещенного в точку Лагранжа, – но изъясняться каждый раз с такими подробностями едва ли возможно.

<p>31</p>

Пример обратной ситуации: шкаф, стоящий в вашей комнате, надо надеяться, устойчив, потому что малые наклоны не приводят к его опрокидыванию, наоборот – шкаф возвращается в исходное положение. Легкость «сваливания» из точки Лагранжа зависит от направления: при сдвиге в некоторых направлениях даже возникает сила, возвращающая тело к точке Лагранжа, но при этом сдвиг в любом другом направлении неизбежно ведет к сваливанию. Картина хорошо описывается термином «седловина»: высыпанная на седловую поверхность крупа скатится вниз не по всем направлениям, но при небольшой встряске в конце концов упадет вся.