Иллюзия «Я», или Игры, в которые играет с нами мозг. Брюс Худ
платформой любых цифровых систем, управляющих всем, начиная от iPod и заканчивая Международной космической станцией, летающей вокруг Земли. Этот двоичный код – основа любого современного компьютерного языка. И тот же самый принцип действует в каждом живом организме, у которого есть нервная система.
Нейроны коммуницируют друг с другом, посылая электрохимические сигналы через соединительные волокна. Типичный нейрон имеет множество отростков, соединяющих его с соседними нейронами, но есть и отростки дальнего действия, которые называют аксонами. С помощью аксонов нейрон общается с группами нейронов, расположенных на достаточно большом расстоянии. Это подобно человеку, имеющему множество друзей в своей округе, с которыми он регулярно общается и при этом поддерживает очень крепкую связь с группой друзей, живущих за границей. На внешней поверхности мозга есть слой коры (на латыни cortex) – слой толщиной 3–4 мм, где нейроны очень плотно спрессованы. Кора представляет особый интерес, поскольку высшая нервная деятельность, делающая нас людьми, как выяснилось, опирается на то, что происходит в этом тонком сером веществе. Именно кора придает мозгу его специфический вид огромного грецкого ореха со множеством извилин[17]. Человеческий мозг в 3000 раз крупнее мозга мыши, но наша кора всего втрое толще[18], ее объем собран в складки. Попробуйте запихнуть большую кухонную губку в небольшую бутылку. Вам придется смять ее. То же самое происходит с человеческим мозгом. Складчатая структура коры – инженерное решение природы в ее стремлении запихнуть как можно больше ресурсов в стандартный череп, чтобы людям не пришлось носить головы размером с большой надувной мяч. Спросите любую мать после родов, и она вежливо объяснит вам, что родить малыша с головой нормального размера и без того непросто, страшно и подумать о ее увеличении!
Подобно странному инопланетному существу, распространяющему повсюду свои щупальца, каждый нейрон связан одновременно с тысячами других нейронов. Комплексная интенсивность поступающей информации определяет состояние нейрона – возбужденное или спокойное. Когда суммарная активность поступлений достигает предельного уровня, нейрон включается, генерируя небольшой электрохимический сигнал, запускающий цепную реакцию в его соединениях. В силу этого каждый нейрон немного похож на микропроцессор, поскольку он подсчитывает суммарную активность всех остальных нейронов, с которыми он связан.
Это напоминает также распространение молвы по округе. Некоторые из нейронов по соседству способствуют возбуждению. Они, как добрые друзья, хотят помочь разнести слух. Другие нейроны – тормозящие, проще говоря, они советуют вам заткнуться. И каждый раз, когда нейрон проводит подобную «беседу» с разными соседями и отдаленными приятелями, он запоминает,
17
E. Ruppin, E.L. Schwartz and Y. Yeshurun, «Examining the volume-efficiency of the cortical architecture in a multi-processor network model», Biological Cybernetics, 70:1 (1993), 89–94.
18
M. Abeles, Corticonics: Neural Circuits of the Cerebral Cortex (Cambridge: Cambridge University Press, 1991).