Scientific research basics in the transportation process. A. Yu. Timkova

Scientific research basics in the transportation process - A. Yu. Timkova


Скачать книгу
of scientific thinking, after its approval, opens the way to the extensive development of knowledge, to its spread to new spheres of reality. However, the accumulation of new material that cannot be explained on the basis of existing schemes forces us to look for new, intensive ways of developing science, which leads from time to time to scientific revolutions, i.e. a radical change in the main components of the content structure of science, to the promotion of new principles of knowledge, categories and methods of science. The alternation of extensive and revolutionary periods of development, which is characteristic both for science as a whole and for its individual branches, sooner or later also finds its expression in corresponding changes in the forms of organization of science.

      The entire history of science is permeated by a complex dialectical combination of processes of differentiation and integration; the development of ever new areas of reality and the deepening of knowledge lead to the differentiation of science, to its fragmentation into more and more specialized areas of knowledge; at the same time, the need for the synthesis of knowledge constantly finds expression in the tendency towards the integration of science.

      Initially, new branches of science were formed according to the objective feature – in accordance with the involvement in the process of cognition of new areas and aspects of reality. For modern science, the transition from subject to problem orientation is becoming more and more characteristic, when new areas of knowledge arise in connection with the advancement of a certain major theoretical or practical problem. Thus, a significant number of butt (boundary) sciences such as biophysics, etc. arose. Their appearance continues the process of differentiation of science in new forms, but at the same time provides a new basis for the integration of previously disparate scientific disciplines.

      Important integrating functions in relation to individual branches of science are performed by philosophy, which generalizes the scientific picture of the world, as well as individual scientific disciplines such as mathematics, logic, cybernetics, arming science with a system of unified methods.

      Science can be seen as a system consisting of:

      – theories;

      – methodology,

      – research methods and techniques;

      – practice of implementation of the obtained results.

      If science is considered from the point of view of the interaction between the subject and the object of knowledge, then it includes the following elements: the object is what a particular science studies. For example, the object of the theory of finance is the basic laws of the emergence and development of finance, their essence, purpose and functioning; subject – a specific scientist, specialist, researcher, scientific organization; scientific activity of subjects applying certain techniques, methods for discovering the laws of reality.

      The development of science proceeds from the collection of facts, their study and systematization, generalization and disclosure of individual patterns to a coherent, logically coherent system of scientific knowledge, which makes it possible to explain already known facts and predict new ones.

      The path of knowledge is determined from living contemplation to abstract thinking and from the latter to practice.

      The process of cognition includes the accumulation of facts. No science can exist without systematization and generalization, without logical comprehension of facts. But although facts are the necessary material for a scientist, they are not science in themselves. Facts become an integral part of scientific knowledge when they appear in a systematized, generalized form.

      Facts are systematized and generalized with the help of the simplest abstractions – concepts (definitions), which are important structural elements of science. The broadest concepts are called categories. These are the most general abstractions. The categories include philosophical concepts about the form and content of phenomena, in economic theory – this is a product, value, etc.

      An important form of knowledge is principles (postulates), axioms. Under the principle understand the initial provisions of any branch of science. They are the initial form of systematization of knowledge (the axioms of Euclidean geometry, Bohr’s postulate in quantum mechanics, etc.).

      The most important component link in the system of scientific knowledge is scientific laws that reflect the most essential, stable, repetitive objective internal connections in nature, society and thinking. Usually laws act in the form of a certain correlation of concepts, categories.

      The highest form of generalization and systematization of knowledge is theory. Theory is understood as the doctrine of generalized experience (practice), which formulates scientific principles and methods that make it possible to generalize and cognize existing processes and phenomena, analyze the effect of various factors on them and offer recommendations for using them in people’s practical activities.

      1.2. Science classification

      Scientific disciplines, which in their totality form the system of sciences as a whole, can be very conditionally divided into 3 large groups (subsystems) – natural, social and technical, differing in their subjects and methods. There is no sharp line between these subsystems – a number of scientific disciplines occupy an intermediate position. So, for example, at the junction of technical and social sciences there is technical aesthetics, between natural and technical sciences – bionics, between natural and social sciences – economic geography. Each of these subsystems, in turn, forms a system of separate sciences coordinated and subordinated by subject and methodological connections in a variety of ways, which makes the problem of their detailed classification extremely complex and not completely resolved to this day.

      Along with traditional research conducted within the framework of any one branch of science, the problematic nature of the orientation of modern science has given rise to a wide deployment of interdisciplinary and complex research conducted by means of several different scientific disciplines, the specific combination of which is determined by the nature of the corresponding problem. An example of this is the study of environmental problems, which is at the crossroads of technical sciences, biology, earth sciences, medicine, economics, mathematics, etc. Such problems arising in connection with the solution of large farms and social problems are typical of modern science.

      According to their orientation, according to their direct relation to practice, individual sciences are usually divided into fundamental and applied. The task of the fundamental sciences is the knowledge of the laws governing the behavior and interaction of the basic structures of nature, society and thinking.

      These laws and structures are studied in their “pure form”, as such, regardless of their possible use. Therefore, the fundamental sciences are sometimes called “pure”. The immediate goal of applied sciences is the application of the results of fundamental sciences to solve not only cognitive, but also social and practical problems. Therefore, here the criterion of success is not only the achievement of truth, but also the measure of satisfaction of the social order. At the intersection of applied sciences and practice, a special area of research is developing – developments that translate the results of applied science into the form of technological processes, structures, industrial materials, etc.

      Applied sciences can develop with a predominance of both theoretical and practical problems. For example, in modern physics, electrodynamics and quantum mechanics play a fundamental role, the application of which to the knowledge of specific subject areas forms various branches of theoretical applied physics – metal physics, semiconductor physics, etc. Further application of their results to practice gives rise to a variety of practical applied sciences – metallurgy, semiconductor technology, etc., the direct connection of which with production is carried out by the corresponding specific developments. All technical sciences are applied.

      As


Скачать книгу