Глаз и Солнце. Сергей Вавилов
и стеклом. Рассмотрим два таких луча (рис. 6).
Луч 1 отражается от первой границы, создавая отраженный луч 1; луч 2, преломляясь на первой поверхности, отражается от второй и попадает снова в линзу. Такие встречающиеся, «интерферирующие», лучи и дают при своем взаимодействии постоянную картину ньютоновых колец. Представим себе теперь, по Ньютону, что лучи 1 и 2 – это пути световых частиц, беспорядочно вылетающих из источника света. Обе частицы совершенно независимы друг от друга. Если мы применим очень слабое освещение, то должны достигнуть наконец такого состояния, что вероятность одновременного прохождения частиц по пути 1 и 2 станет ничтожной. Если прав Ньютон, то в таком случае кольца должны исчезнуть: частицам не с чем взаимодействовать, интерферировать. Между тем опыт с кольцами удается с тем же результатом при сколь угодно малых интенсивностях. Можно, например, выбрать такое слабое освещение, что для фотографирования колец Ньютона потребуется несколько дней, и тем не менее кольца получаются такими же отчетливыми, как и при ярком освещении.
Сто пятьдесят лет должны были пройти, прежде чем было показано, что опыты с кольцами и аналогичные интерференционные явления без всяких затруднений объясняются, если только допустить, что свет есть волновое движение. В самом деле, волна распространяется от светящейся точки во все стороны и при любой интенсивности на всех своих участках несет какую-то энергию, следовательно, лучи 1 и 2 всегда могут интерферировать. Кроме того, теория волн предсказывает вполне точно и результат интерференции: если разность хода двух лучей 1 и 2 при встрече такова, что впадина одной волны как раз приходится на гребень другой, то в этом месте волны как бы гасят одна другую, получается темное кольцо; наоборот, в соседнем участке, где сходятся гребни обеих волн, получается взаимное усиление, т. е. светлое кольцо.
Рис. 7
Колебания в неполяризованном и поляризованном свете
С таким же успехом новая теория световых волн объяснила все тонкости дифракции, предсказывая факты, всегда безупречно оправдывавшиеся на опыте. Поляризация света в теории волн также получила ясное толкование. Явление поляризации показывает, что световые волны поперечны, т. е. колебания совершаются отвесно к направлению луча, точно так же как в водяных волнах на поверхности пруда. В неполяризованных лучах колебания происходят в любых направлениях вокруг луча (рис. 7), в поляризованных – только в одном направлении.
Волновая теория в первой половине XIX века победила теорию истечения Ньютона безукоризненной качественной и количественной точностью своих предсказаний. Но насколько прочна была эта победа? Вспомним, что для Ньютона главным доводом против теории волн было отсутствие механической среды – эфира – в межпланетном пространстве. Устранили ли этот довод Юнг и Френель? Нет, для них именно волновые свойства света казались доказательством бытия эфира. В течение всего XIX века физики тщетно стремились