Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных. Алексей Михнин

Табличное мастерство. Осваиваем модели машинного обучения для анализа табличных данных - Алексей Михнин


Скачать книгу
этом примере каждая строка представляет год, а столбцы содержат информацию о количестве населения, ВВП, инфляции и безработице в соответствующем году. Эти данные могут быть использованы для анализа тенденций и прогнозирования будущих значений этих показателей. Например, на основе этих данных можно построить модель машинного обучения для прогнозирования ВВП на следующий год на основе количества населения и предыдущих значений ВВП, инфляции и безработицы.

      Обработка естественного языка (NLP) – анализ и понимание текстовых данных в табличной форме. Примеры: анализ тональности текста, извлечение ключевых слов или автоматическая категоризация текстов.

      В этом примере каждая строка представляет собой отзыв на продукт, содержащий его текст и тональность (положительную или отрицательную). Эти данные могут использоваться для анализа качества продукта и выявления проблем, которые нужно решить. Они также могут использоваться для создания модели машинного обучения, которая может автоматически классифицировать тональность отзывов на продукт.

      Анализ табличных данных с помощью машинного обучения может быть применен в широком спектре отраслей и сфер, таких как финансы, здравоохранение, розничная торговля, логистика, маркетинг, образование и многих других.

      Этапы типовых проектов по машинному обучению

      Внедрение проектов машинного обучения может быть сложным процессом, требующим знаний и опыта, а также взаимодействия между различными командами и отделами. Обычно для внедрения таких проектов используется методология, состоящая из нескольких этапов, которая гарантирует эффективность и успешность проекта.

      Определение проблемы и целей проекта:

      На этом этапе команда определяет конкретные проблемы, которые должны быть решены с помощью машинного обучения, а также формулирует цели и ожидаемые результаты проекта.

      Цели:

      Определить проблемы, которые должны быть решены с помощью машинного обучения

      Сформулировать цели и ожидаемые результаты проекта

      Задачи:

      Согласовать проблемы и цели с заинтересованными сторонами

      Определить метрики для измерения успеха проекта

      Документы:

      Техническое задание (Project Charter) с описанием проблемы и целей проекта

      Сбор и подготовка данных:

      Качество данных является ключевым фактором успеха в машинном обучении. На этом этапе команда собирает и предобрабатывает данные, удаляет пропущенные значения, исправляет ошибки, кодирует категориальные переменные и нормализует числовые признаки.

      Цели:

      Собрать данные, необходимые для обучения и валидации моделей

      Подготовить данные к анализу и использованию в моделях машинного обучения

      Задачи:

      Очистить данные от ошибок и пропущенных значений

      Обработать категориальные и числовые признаки

      Документы:

      Отчет


Скачать книгу