SSWI: алгоритмы и практические примеры. Алгоритмы и коды, практические примеры. ИВВ
значения y_true (истинные значения меток классов) и y_scores (оценки модели, которые используются для вычисления ROC-кривой). Эти значения могут быть получены из модели машинного обучения, после чего может быть выполнено настройка порогового значения SSWI.
Алгоритм генерации синтетических данных и сравнительного анализа для формулы SSWI
«Алгоритм генерации синтетических данных и сравнительного анализа для формулы SSWI» предоставляет дополнительные возможности для анализа, обработки и проверки формулы SSWI в различных научных и прикладных ситуациях. Эти алгоритмы охватывают разнообразные методы, включая кластерный анализ, временной анализ и генерацию синтетических данных. Они позволяют более глубоко изучить паттерны, динамику и свойства SSWI, а также использовать и проверять формулу в более широком контексте. Эти алгоритмы обеспечивают улучшенное понимание и применение формулы SSWI в различных научных и практических областях.
Алгоритм генерации синтетических данных для тестирования формулы SSWI:
– Сгенерировать синтетические данные, включающие значения параметров α, β, γ, δ, ε и заданные значения SSWI на основе различных сценариев или распределений параметров.
– Применить формулу SSWI к синтетическим данным для проверки правильности расчета и соответствия ожидаемым результатам.
– Провести сравнительный анализ между известными значениями SSWI в синтетических данных и значениями, полученными с использованием формулы SSWI, чтобы оценить точность и эффективность расчета.
Алгоритм позволит генерировать синтетические данные для тестирования формулы SSWI и проведения сравнительного анализа
1. Задать количество синтетических данных, которые нужно сгенерировать.
2. Задать диапазоны значений для каждого параметра (α, β, γ, δ, ε) в соответствии с требуемыми значениями и распределениями.
3. Используя случайную генерацию, создать значения для каждого параметра (α, β, γ, δ, ε) в указанных диапазонах для каждой синтетической точки данных. Это может включать, например, использование случайных чисел из равномерного или нормального распределения.
4. Применить формулу SSWI =(α * β * γ) / (δ * ε) для каждой синтетической точки данных, используя значения параметров α, β, γ, δ, ε, которые были сгенерированы на предыдущем шаге.
5. Сравнить значения SSWI из синтетических данных с ожидаемыми значениями, которые были заданы на начальном этапе, для оценки точности и соответствия расчету формулы SSWI.
Этот алгоритм позволяет проверить правильность расчета формулы SSWI и оценить точность и эффективность ее использования на синтетических данных, включая проведение сравнительного анализа с ожидаемыми значениями SSWI. Он может быть адаптирован под конкретные требования и распределения параметров.
Код алгоритма для генерации синтетических данных и проведения сравнительного анализа для формулы SSWI
import numpy as np
# Шаг 1: Задание количества синтетических данных
num_samples = 1000
# Шаг 2: Задание диапазонов значений параметров
alpha_range = (0.1, 0.9)
beta_range = (0.1, 0.9)
gamma_range = (0.1, 0.9)
delta_range = (0.1, 0.9)
epsilon_range = (0.1, 0.9)
&nb