Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей. Александр Панчин
ГМ кукурузу NK603, погибали чаще и имели больше опухолей, чем крысы из контрольной группы, которые ели обычную кукурузу. Большинство специалистов, глядя на опубликованные результаты, возражали, что этот вывод не обоснован. В такой ситуации обычному человеку сложно понять, кому доверять: Сералини или тем, кто его критикует. Для этого желательно узнать, в чем, собственно, заключалась критика.
В этой главе представлен обзор аргументов в пользу безопасности использования уже существующих генетически улучшенных организмов в качестве продуктов питания. Это необычный обзор, потому что я опираюсь исключительно на данные, полученные теми, кто писал о возможной опасности ГМО, в том числе и на данные, полученные Сералини.
В значительной части работ, в которых было заявлено негативное действие ГМО на животных, выводы не соответствуют результатам. Это связано с тем, что в них присутствует одна и та же ошибка, которая заключается в некорректном применении аппарата математической статистики. После ее устранения полученные данные перестают свидетельствовать в пользу того, что ГМО опаснее обычных организмов. Следуя завету Сералини, давайте разберемся в том, как статистика помогает понять результаты исследований. Но сначала попробуем понять саму статистику.
В статистике существует понятие, которое называется нулевая гипотеза. Это понятие отражает позицию по умолчанию, утверждающую, что между двумя явлениями нет никакой связи. Она говорит, что орел или решка на монете выпадают равновероятно и независимо от погоды. Что рак легких не связан с курением. Что цвет глаз человека не зависит от его пола. Что число пропавших в течение недели носков не зависит от того, наблюдалось ли на небе НЛО. Что токсичность картошки не зависит от того, генетически модифицирована она или нет, и так далее. В некоторых случаях нулевая гипотеза верна, в других – нет. До появления доказательств обратного нулевая гипотеза считается верной по умолчанию, поэтому научные эксперименты сводятся к тому, что нулевую гипотезу пытаются опровергнуть.
Статистические тесты позволяют оценить, насколько высока вероятность получить некий результат при условии, что нулевая гипотеза верна. Допустим, что мы провели эксперимент, в котором подкинули монетку десять раз и все десять раз выпала решка. В данном случае за нулевую гипотезу можно принять равную вероятность выпадения орла и решки. При таком допущении вероятность выкинуть решку десять раз из десяти равна ½ в десятой степени, то есть менее одной тысячной. Полученная вероятность называется P-значение, или просто P, и это вероятность получить такое же или более существенное отклонение результата эксперимента от ожидаемого. Полученное P сравнивается с пороговым значением, уровнем значимости, обозначаемым α (альфа). Общепринятыми значениями α являются либо 0,05, либо 0,01, либо 0,001. Отметим, что 0,05 – самый мягкий порог, который можно встретить в научной литературе, хотя это лишь некоторая условность.
Если полученное значение P меньше, чем пороговое значение, мы считаем,