Нейросети. Обработка естественного языка. Джейд Картер
обучения модель оценивается на тестовом наборе данных для оценки ее производительности. Метрики, такие как точность, полнота и F1-мера, могут использоваться для измерения качества классификации.
Применение модели:
– После успешного обучения модель можно использовать для классификации новых текстовых документов на категории.
Пример кода на Python с использованием библиотек TensorFlow и Keras для классификации текста с использованием CNN:
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
# Подготовка размеченных данных (пример данных)
texts = ["Политика: новости о выборах", "Спорт: результаты чемпионата", "Экономика: рост ВВП", "Наука: новое исследование"]
labels = ["Политика", "Спорт", "Экономика", "Наука"]
# Преобразование меток в числа
label_encoder = LabelEncoder()
y = label_encoder.fit_transform(labels)
# Токенизация и векторизация текстов
tokenizer = Tokenizer()
tokenizer.fit_on_texts(texts)
word_index = tokenizer.word_index
sequences = tokenizer.texts_to_sequences(texts)
# Подготовка последовательностей и паддинг
max_sequence_length = max([len(seq) for seq in sequences])
padded_sequences = pad_sequences(sequences, maxlen=max_sequence_length)
# Разделение на обучающий и тестовый наборы
x_train, x_test, y_train, y_test = train_test_split(padded_sequences, y, test_size=0.2, random_state=42)
# Создание CNN модели
model = Sequential()
model.add(Embedding(input_dim=len(word_index) + 1, output_dim=100, input_length=max_sequence_length))
model.add(Conv1D(128, 3, activation="relu")) # Изменено количество фильтров и размер свертки
model.add(GlobalMaxPooling1D())
model.add(Dense(len(set(y)), activation="softmax"))
# Компиляция модели
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
# Обучение модели
model.fit(x_train, y_train, epochs=10, validation_split=0.2)
# Оценка модели
y_pred = model.predict(x_test)
y_pred = tf.argmax(y_pred, axis=1).numpy()
accuracy = accuracy_score(y_test, y_pred)
print(f"Точность: {accuracy:.4f}")
Результат выполнения кода, представленного выше, будет включать в себя точность классификации модели на тестовых данных. В коде это вычисляется с помощью следующей строки:
```python
accuracy = accuracy_score(y_test, y_pred)
```
`accuracy` – это значение точности, которое будет выведено на экран. Это число будет между 0 и 1 и показывает, какой процент текстов в тестовом наборе был правильно классифицирован моделью.
Интерпретация результата:
– Если точность равна 1.0, это означает, что модель идеально классифицировала все тексты в тестовом наборе и не допустила ни одной ошибки.
– Если точность равна 0.0, это означает, что модель не смогла правильно классифицировать ни один текст.
– Если точность находится между 0.0 и 1.0, это показывает процент правильно классифицированных текстов. Например, точность 0.8 означает, что модель правильно классифицировала 80% текстов.
Важно помнить, что точность – это только одна из метрик, которые можно использовать для оценки модели. Для полного понимания производительности модели также рекомендуется рассмотреть другие метрики, такие как точность (precision), полнота (recall), F1-мера (F1-score) и матрица ошибок