Риски цифровизации: виды, характеристика, уголовно-правовая оценка. Коллектив авторов
веб-сайт социальной сети определяет принадлежность к целевой аудитории, в частности к группе беременных женщин, чтобы показать конкретную рекламу, то можем изменить свое поведение, предположим, пытаясь найти информацию о памперсах, и проверить, получаем ли мы объявления, предназначенные для будущих мам.
Восстановление принадлежности экземпляра. Злоумышленник намеревается узнать, был ли конкретный экземпляр в наборе обучающих данных. Речь идет о распознавании изображений. Атакующий хочет проверить, были или нет в обучающем наборе сведения о конкретном человеке. Сам по себе это редко используемый тип разведочных атак. Однако он дает возможность разработать план дальнейших атаки, таких как атака «уклонение» класса «черный ящик». Чем больше вредоносный набор данных похож на набор данных жертвы, тем выше у злоумышленника шанс переобучить атакуемую модель. Вывод атрибута помогает узнать обучающие данные (например, об акценте ораторов в моделях распознавания речи). Успешная атака на восстановление принадлежности показывает, насколько соблюдается конфиденциальность, в частности персональных данных, разработчиками моделей ИИ.
Инверсия модели. На сегодняшний день является наиболее распространенным типом разведочных атак. В отличие от восстановления принадлежности, когда можно всего лишь угадать, был ли пример в наборе обучающих данных, при инверсии модели злоумышленник пытается извлечь из обучающего набора данные в полном объеме. При работе с изображениями извлекается определенное изображение. Например, зная только имя человека, злоумышленник получает его (ее) фотографию. С точки зрения конфиденциальности это большая проблема для любой системы, обрабатывающей персональные данные. Известны также атаки на модели ИИ, которые используются для оказания помощи в лечении в зависимости от генотипа пациента.
Восстановление параметров модели. Цель подобной атаки – определить модель ИИ и ее гиперпараметры для последующих атак типа «уклонение» класса «черный ящик». При этом восстановленные параметры модели используют, чтобы увеличить скорость атак. Одна из первых работ о таких атаках была опубликована в 2013 г. («Взлом умных машин при помощи более умных: как извлечь значимые данные из классификаторов машинного обучения»).
Кроме основных типов атак, выделяют атаки backdoors и trojans. Цели этих атак и типы атакующих различны, но технически они очень похожи на атаки «отравления». Разница заключается в наборе данных, доступных злоумышленнику.
Троянские атаки (trojans). Во время отравления злоумышленники не имеют доступа к модели и начальному набору данных, они могут только добавить новые данные в существующий набор или изменить его. Что касается трояна, то злоумышленники все еще не имеют доступа к начальному набору данных, но у них есть доступ к модели и ее параметрам, и они могут переобучить эту модель, поскольку в настоящее время компании, как правило, не создают свои собственные модели с нуля, а переобучают существующие модели. Например,