Глоссариум по искусственному интеллекту: 2500 терминов. Том 2. Александр Юрьевич Чесалов
string matching (also fuzzy string searching) – the technique of finding strings that match a pattern approximately (rather than exactly). The problem of approximate string matching is typically divided into two sub-problems: finding approximate substring matches inside a given string and finding dictionary strings that match the pattern approximately65.
Approximation error – the discrepancy between an exact value and some approximation to it66.
Architectural description group (Architectural view) is a representation of the system as a whole in terms of a related set of interests67,68.
Architectural frameworks are high-level descriptions of an organization as a system; they capture the structure of its main components at varied levels, the interrelationships among these components, and the principles that guide their evolution69.
Architecture of a computer is a conceptual structure of a computer that determines the processing of information and includes methods for converting information into data and the principles of interaction between hardware and software70.
Architecture of a computing system is the configuration, composition and principles of interaction (including data exchange) of the elements of a computing system71.
Architecture of a system is the fundamental organization of a system, embodied in its elements, their relationships with each other and with the environment, as well as the principles that guide its design and evolution72.
Archival Information Collection (AIC) is information whose content is an aggregation of other archive information packages. The digital preservation function preserves the capability to regenerate the DIPs (Dissemination Information Packages) as needed over time73.
Archival Storage is a source for data that is not needed for an organization’s everyday operations, but may have to be accessed occasionally. By utilizing an archival storage, organizations can leverage to secondary sources, while still maintaining the protection of the data. Utilizing archival storage sources reduces primary storage costs required and allows an organization to maintain data that may be required for regulatory or other requirements74.
Area under curve (AUC) – the area under a curve between two points is calculated by performing the definite integral. In the context of a receiver operating characteristic for a binary classifier, the AUC represents the classifier’s accuracy75.
Area Under the ROC curve is the probability that a classifier will be more confident that a randomly chosen positive example is actually positive than that a randomly chosen negative example is positive76.
Argumentation framework is a way to deal with contentious information and draw conclusions from it. In an abstract argumentation framework, entry-level information is a set of abstract arguments that, for instance, represent data or a proposition. Conflicts between arguments are represented by a binary relation on the set of arguments77.
Artifact is one of many kinds of tangible by-products produced during the development of software. Some artifacts (e.g., use cases, class diagrams, and other Unified Modeling Language (UML) models, requirements and design documents) help describe the function, architecture, and design of software. Other artifacts are concerned with the process of development itself – such as project plans, business cases, and risk assessments78.
Artificial General Intelligence (AGI) as opposed to narrow intelligence, also known as complete, strong, super intelligence, Human Level Machine Intelligence, indicates the ability of a machine that can successfully perform any tasks in an intellectual way as the human being. Artificial superintelligence is a term referring to the time when the capability of computers will surpass humans79,80.
Artificial Intelligence (AI) – (machine intelligence) refers to systems that display intelligent behavior by analyzing their environment and taking actions – with some degree of autonomy – to achieve specific goals. AI-based systems can be purely software-based, acting in the virtual world (e.g., voice assistants, image analysis software, search engines, speech and face recognition systems) or AI can be embedded in hardware devices (e.g., advanced robots, autonomous cars, drones, or Internet of Things applications). The term AI was first coined by John McCarthy in 195681.
Artificial Intelligence Automation Platforms – platforms that enable the automation and scaling of production-ready AI. Artificial Intelligence Platforms involves the use of machines to perform the tasks that are performed by human beings. The platforms simulate the cognitive function that human minds perform such as problem-solving, learning, reasoning, social intelligence as well as general intelligence. Top Artificial Intelligence Platforms: Google AI Platform, TensorFlow, Microsoft Azure, Rainbird, Infosys Nia, Wipro HOLMES, Dialogflow, Premonition, Ayasdi, MindMeld, Meya, KAI, Vital A.I, Wit, Receptiviti, Watson Studio, Lumiata, Infrrd82.
Artificial intelligence engine (also AI engine, AIE) is an artificial intelligence engine, a hardware and software solution for increasing the speed and efficiency of artificial intelligence system tools.
Artificial Intelligence for IT Operations (AIOps) is an emerging IT practice that applies artificial intelligence to IT operations to help organizations intelligently manage infrastructure, networks, and applications for performance, resilience, capacity, uptime, and, in some cases, security. By shifting traditional, threshold-based alerts and manual processes to systems that take advantage of AI and machine learning, AIOps enables organizations to better monitor IT assets and anticipate negative incidents and impacts before they take hold. AIOps is a term coined by Gartner in 2016 as an industry category for machine learning analytics technology that enhances IT operations analytics covering operational tasks include automation, performance monitoring and event correlations, among others. Gartner define an AIOps Platform thus: «An AIOps platform combines big data and machine learning functionality to support all primary IT operations functions through the scalable ingestion and analysis of the ever-increasing volume, variety and velocity of data generated by IT. The platform enables the concurrent use of multiple data sources, data collection methods, and analytical and presentation technologies»83,84,85.
Artificial Intelligence Markup Language (AIML) is an XML dialect for creating natural language software agents86.
Artificial Intelligence of the Commonsense knowledge is one of the areas of development of artificial intelligence, which is engaged in modeling the ability of a person to analyze various life situations and be guided
65
Approximate string matching [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Approximate_string_matching (дата обращения: 11.05.2023)
66
Approximation error [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Approximation_error (дата обращения: 20.06.2023)
67
Архитектурная группа описаний [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Архитектура_системы (дата обращения: 28.03.2023)
68
Архитектурная группа описаний [Электронный ресурс] https://habr.com URL: https://habr.com/ru/post/347204/ (дата обращения: 28.03.2023)
69
Architectural frameworks [Электронный ресурс] https://implementationscience.biomedcentral.com URL: https://implementationscience.biomedcentral.com/articles/10.1186/s13012-017-0607-7#:~:text=Architectural% 20frameworks%20are%20high%2Dlevel, principles%20that%20guide%20their%20evolution (дата обращения: 07.07.2022)
70
Архитектура вычислительной машины [Электронный ресурс] https://ru.wikipedia.org URL: https://ru.wikipedia.org/wiki/Архитектура_(значения) (дата обращения: 28.03.2023)
71
Архитектура вычислительной системы [Электронный ресурс] https://cdto.wiki URL: https://cdto.wiki/Архитектура_вычислительной_системы (дата обращения: 28.03.2023)
72
Architecture of a system [Электронный ресурс] http://cabibbo.dia URL: http://cabibbo.dia.uniroma3.it/ids/altrui/ieee1471.pdf (дата обращения: 28.03.2023)
73
Archival Information Collection (AIC) [Электронный ресурс] www.umich.edu URL: https://www.icpsr.umich.edu/web/ICPSR/cms/2042#A (дата обращения: 07.07.2022)
74
Archival Storage [Электронный ресурс] www.komprise.com (дата обращения: 07.07.2022) URL: https://www.komprise.com/glossary_terms/archival-storage/
75
Area under curve (AUC) [Электронный ресурс] https:// revisionmaths.com URL: https://revisionmaths.com/advanced-level-maths-revision/pure-maths/calculus/area-under-curve (дата обращения 14.02.2022)
76
Area Under the ROC curve [Электронный ресурс] https://www.primeclasses.in URL: https://www.primeclasses.in/glossary/data-science-course/machine-learning/auc-area-under-the-roc-curve (дата обращения: 26.06.2023)
77
Argumentation framework [Электронный ресурс] https://studme.org URL: https://studme.org/1696092625732/logika/struktura_argumentatsii (дата обращения: 19.02.2022)
78
Artifact [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Artifact_(software_development) (дата обращения: 07.07.2022)
79
Artificial General Intelligence [Электронный ресурс] https://developers.google.com URL: https://developers.google.com/machine-learning/glossary#artificial-general-intelligence (дата обращения: 16.06.2023)
80
Artificial General Intelligence [Электронный ресурс] https://en.wikipedia.org URL: https://en.wikipedia.org/wiki/Artificial_general_intelligence (дата обращения: 16.06.2023)
81
Artificial Intelligence [Электронный ресурс] https://absel.ua URL: https://absel.ua/news/tri-tipa-iskusstvennogo-intellekta-ponimanie-ii.htmlobuchenii (дата обращения: 18.02.2022)
82
Artificial Intelligence Automation Platforms [Электронный ресурс] www.predictiveanalyticstoday.com URL: https://www.predictiveanalyticstoday.com/artificial-intelligence-platforms/ (дата обращения: 07.07.2022)
83
Artificial Intelligence for IT Operations (AIOps) [Электронный ресурс] www.cio.com URL: https://www.cio.com/article/196239/what-is-aiops-injecting-intelligence-into-it-operations.html (дата обращения: 07.07.2022)
84
Artificial Intelligence for IT Operations (AIOps) [Электронный ресурс] www.gartner.com URL: https://www.gartner.com/en/information-technology/glossary/aiops-platform (дата обращения: 07.07.2022)
85
Искусственный интеллект для ИТ-операций [Электронный ресурс] https://networkguru.ru URL: https://networkguru.ru/aiops-artificial-intelligence-for-it-operations/ (дата обращения: 07.07.2022)
86
Artificial Intelligence Markup Language AIML [Электронный ресурс] https://engati.com URL: https://www.engati.com/glossary/artificial-intelligence-markup-language (дата обращения: 18.02.2022)