История античной науки. Открытия великих ученых и мыслителей древности. Джордж Сартон

История античной науки. Открытия великих ученых и мыслителей древности - Джордж Сартон


Скачать книгу
существовал отдельный символ, который часто встречается в математических текстах.

      Папирус Ринда начинается с таблицы разложения дробей типа 2/(2π + 1), в которой n — натуральное число от 2 до 50:

      То, что таблица помещена в начало трактата, типично для его полутеоретического, полупрактического характера. Писец или его неизвестный предшественник экспериментальным путем пришел к некоторому уровню абстракции и счел целесообразным представить его.

      Затем следуют 40 арифметических задач (см. задачу 4 на рис. 9), которые связаны с делением 1, 2…, 9 на 10, умножением дробей, задач на дополнение вычитаемого до уменьшаемого (дополнить 2/3 1/30 до 1; правильный ответ – 1/5 1/10), задачи на величины (сумма некоторой величины и 1/7 от нее равняется 19; найти величину. Ответ – 16 1/2 1/8), деление на дробь, деление на меру хекат, деление хлебов в арифметической прогрессии (см. пример ниже). Эти задачи ведут к уравнениям первой степени с одним неизвестным. Конечно, на папирусе нет уравнений, но можно отметить символы, обозначающие сложение, вычитание и даже один символ, представляющий неизвестную величину. Задача в Берлинском папирусе (№ 6619) Кахуна (XII династия) решается двумя уравнениями, причем одно из них квадратичное, с двумя неизвестными. В современной записи:

      х2 + у2 = 100

      У = 3/4 х.

      Рис. 9. Папирус Ринда, задача 4 (частично в Британском музее, частично в Нью-Йоркском историческом обществе). Верхняя часть воспроизводит изначальный иератический шрифт; ниже приведена запись иероглифами с транслитерацией. Вольный перевод: «Раздели 7 хлебов между 10 людьми». Решение: каждый получит по 7/10 = 2/3 + 1/30, то есть нужно сначала каждый хлеб разделить на 3 части и дать каждому по две, а затем разделить оставшуюся треть на 10 частей и дать каждому по одной.

      Всего 7 хлебов, что правильно

      Ответ: x = 8, у = 6. Тогда 82 + 62 = 100, или 42 + З2 = 52; мы узнаем числа, фигурирующие в теореме Пифагора (к ней мы еще вернемся).

      Вот последняя арифметическая задача:

      Задача 40. «Раздели 100 хлебов между 5 людьми таким образом, чтобы доли, доставшиеся каждому, находились в арифметической прогрессии и 1/7 от суммы трех самых больших доль была равна сумме двух меньших. Какова разница между долями?»

      Решение: пусть разница между долями составляет 51/2 Тогда доли, доставшиеся 5 людям, будут

      23 171/2 12 61/2 1, всего 60.

      Столько раз, сколько необходимо умножить 60, чтобы получилось 100, на столько же необходимо умножить эти доли.

      1 60

      2/3 40

      Всего 12/3 на 60 дает 100.

      Умножить на 12/3:

      Задачи 41–60 связаны с вычислением площади и объема, а задачи 61–84 носят смешанный характер. Площадь треугольника вычисляют умножением его основания на половину стороны; это верно лишь для остроугольных треугольников. Объем цилиндрического амбара


Скачать книгу