Искусственный интеллект. Машинное обучение. Джейд Картер

Искусственный интеллект. Машинное обучение - Джейд Картер


Скачать книгу
являются экстремальными значениями, которые значительно отличаются от типичных значений в данных. Они могут возникать из-за естественной изменчивости данных или указывать на проблемы в процессе измерения или сбора данных. Выбросы могут серьезно искажать статистические выводы и модели, если они не учитываются или не обрабатываются соответственно.

      Идентификация аномалий и выбросов требует внимательного анализа данных и использования различных методов. Это может включать в себя статистические подходы, такие как анализ стандартных отклонений или межквартильного размаха, а также машинное обучение, например, алгоритмы детектирования аномалий или обучение моделей на нормальных данных. Эффективное выявление и обработка аномалий и выбросов в данных позволяет улучшить качество анализа и моделей, повышая их надежность и интерпретируемость.

      Подходы к выявлению аномалий и выбросов:

      -Статистические методы

      Один из наиболее распространенных методов выявления аномалий – использование статистических подходов. Среди них выделяются Z-оценка и диаграмма ящика с усами.

      Z-оценка является мощным инструментом для выявления аномалий в данных. Эта стандартизированная мера позволяет оценить, насколько наблюдение отличается от среднего значения в выборке, измеряя это отклонение в стандартных единицах. Преимущество Z-оценки заключается в том, что она позволяет сравнивать различные переменные, имеющие разные единицы измерения, в единой шкале, основанной на стандартном отклонении.

      Значения Z-оценки вычисляются путем деления разности между наблюдением и средним значением на стандартное отклонение. Таким образом, Z-оценка показывает, сколько стандартных отклонений от среднего составляет данное наблюдение. Например, если Z-оценка равна 2, это означает, что наблюдение находится на расстоянии двух стандартных отклонений от среднего.

      При использовании Z-оценки для выявления аномалий обычно устанавливается определенный порог, за который значения считаются аномальными. Обычно принимается порог в 2 или 3 стандартных отклонения от среднего. Значения, превышающие этот порог, считаются потенциальными аномалиями и могут требовать дополнительного анализа или обработки. Z-оценка предоставляет аналитикам и исследователям информацию о том, насколько каждое наблюдение отличается от среднего значения в выборке, и помогает выявить потенциальные аномалии, которые могут быть важны для дальнейшего анализа данных.

      Допустим, у нас есть набор данных о продажах товаров в интернет-магазине за последний год. Мы хотим выявить аномалии в ценах продуктов, которые могут указывать на ошибки в данных или наличие выбросов.

      Для этого мы можем использовать Z-оценку. Предположим, у нас есть столбец данных, содержащий цены продуктов. Мы можем вычислить Z-оценку для каждой цены, используя формулу:

      После вычисления Z-оценок мы можем увидеть, что только цена 30 имеет Z-оценку превышающую 2, следовательно, она считается аномальной. Это может указывать


Скачать книгу