No kā viss ir izgatavots? Stāsti par vielu. Edgars Auziņš
Tā radītāji, vācu fiziķi Makss Knolls un Ernsts Ruska 1931. gadā nejauši pamanīja, ka, ja elektronu plūsma izplūst cauri visplānākajam vielas slānim un nokrīt uz jutīga ekrāna, tad uz šī ekrāna var redzēt to veidojošo molekulu ēnas. Lūk, vēl viens pierādījums molekulu pastāvēšanai. Jūs varat apskatīt pirmo krievu elektronu mikroskopu, ja neesat slinki un aizbraucat uz Politehnisko muzeju Maskavā, kur tas ir publiski izstādīts.
Mūsdienās zinātnes un tehnikas progress ir sasniedzis tik neticamas virsotnes. ka ir ierīces, kas ļauj saskatīt atomus! Tie ir skenējošās zondes mikroskopi, kuru pirmo modeli 1981. gadā izgudroja Gerds Binnigs un Heinrihs Roreers. Un 1986. gadā viņiem tika piešķirta Nobela prēmija fizikā par šo izgudrojumu, kas ļauj pētniekiem ielūkoties pašos matērijas dziļumos. Viņiem pievienojās arī Ernsts Ruska. Viņam uz šo balvu bija jāgaida 55 gadus, taču taisnīgums uzvarēja.
Šajā jaunās paaudzes mikroskopā visplānākā adata, uzasināta no viena atoma, it kā taustot vielas vai materiāla virsmu un pārraidot tās attēlu uz ekrāna. Tādējādi pirmo reizi uz zelta plāksnītes bija iespējams saskatīt zelta atomus, kas, kā uzskatīja ķīmiķi, izvietoti blīvās rindās, lodīte pie lodītes. Un arī bija iespējams aplūkot vissvarīgāko dzīvības molekulu – DNS molekulu, uz kuras ir ierakstīta visa mantojuma informācija un kura kontrolē visus mūsu organismā notiekošos procesus. Tā zinātnieki savām acīm pārliecinājās, ka DNS molekula izskatās kā gara ķēde vai drīzāk – kā spirāle.
Es domāju, ka ir pienācis laiks apstāties. Galu galā galveno jau esam uzzinājuši. Viss ap mums, arī mēs paši, sastāv no vielām, vielas sastāv no atomiem, atomi sastāv no elementārdaļiņām. Bet no kurienes radās visas šīs elementārdaļiņas, no kurām veidojas atomi, no kurām veidojas vielas, no kurām veidojas viss, arī mēs paši?
2. nodaļa: No kurienes rodas vielas?
Lai saprastu, no kurienes radās matērijas būvmateriāls – elementārdaļiņas, mums ir jādodas uz tālo pagātni. «Bet laika mašīnas eksistē tikai zinātniskās fantastikas romānos un filmās!» – jūs sakāt. Un nē, tās nepastāv, un jā, tās pastāv. Līdz šim patiešām nav radīts neviens transportlīdzeklis, kas fiziski varētu mūs pārvietot uz pagātni. Izņemot tādas filmas kā «Atgriešanās nākotnē» (ASV). Un tas būtu lieliski: apsēsties mīkstā krēslā, piesprādzēt jostas, iestatīt displejā "-2000 gadu», nospiest pogu «Braucam», un pēc dažām minūtēm jūs jau esat senajā Romā, Kolizejā, vērojot gladiatoru cīņu. Iespējams, kad kļūsiet par pētniekiem, jūs piedalīsieties šādas mašīnas izveidē. Tikmēr astrofiziķi, kas pēta Visumu, ik dienu spēj ielūkoties tālā pagātnē un uzzināt par tur notikušajiem notikumiem. Tāpēc viņiem ir savas laika mašīnas – teleskopi.
Viss ir saistīts ar gaismu. Kad mēs skatāmies uz kādu priekšmetu vai cilvēku, visbiežāk uz mammu, mēs redzam gaismu, kas atstarojas no viņas sejas, matiem, brillēm, uzvalka, manikīra un grumbiņām pie acīm, kad viņa smaida. Atstarotā gaisma nonāk mūsu acīs, īpašā uztvērējierīcē – tīklenē. Tā, savukārt, pārraida signālu uz smadzenēm, un smadzenes pašas veido mūsu redzētā attēlu. Atstarotā gaisma nes informāciju par vissīkākajām objekta detaļām, tā formu, krāsu, faktūru – visu. Nekas no tās neizbēg – ne plankums uz jūsu piedurknes, ne netīrās kurpes, ko aizmirsu iztīrīt pirms skolas, ne nagi, ko esat nokodis. Tas ir vienkārši ideāls kopētājs.
Gaisma pārvietojas ar neiedomājamu ātrumu – 300 000 kilometru sekundē. Nekas Visumā nekur nelido ātrāk par šo ātrumu. Bet šis ātrums ir ierobežots. Un, ja gaismai, kas nes informāciju par kādu objektu, jānoiet miljoniem vai miljardiem kilometru, tas aizņem ievērojamu laiku. Tāpēc mēs skatāmies uz Mēnesi. Un ko mēs redzam? Skaistu baltu disku nakts debesīs, kas klāts ar tumšiem plankumiem. Dažkārt mums šķiet, ka šie plankumi veido sievietes sejas attēlu. Taču diez vai jūs esat kādreiz aizdomājušies, ka, skatoties uz mēnesi, mēs skatāmies atpakaļ laikā, dažas sekundes. Tieši tik ilgā laikā gaismai ir nepieciešams, lai pārvarētu attālumu no Mēness līdz Zemei. Un, ja mēs skatāmies uz Sauli, mēs ceļojam vēl tālāk pagātnē – dažas minūtes. Tās ir nepieciešamas, lai gaisma nokļūtu no Saules līdz Zemei, jo Saule atrodas daudz tālāk no mūsu planētas.
Nerunāsim, piemēram, par Alfa Centaura zvaigžņu sistēmu! Tumšā, skaidrā naktī tā ir redzama debesīs, īpaši tās spožākā zvaigzne – Alfa Centauri A. Mūsu skatiens uz šo zvaigzni ir gandrīz četrus ar pusi gadus atpakaļ laikā: tieši tik ilgs laiks ir nepieciešams, lai zvaigznes gaisma sasniegtu mūsu acis. Ja šo attālumu izsaka kilometros, tas ir garš skaitlis ar daudzām nullēm. Ar šādiem skaitļiem ir grūti operēt. Tāpēc astrofiziķi ir izgudrojuši savu garuma mēru kosmiskiem attālumiem – gaismas gadu. Tas ir vienāds ar attālumu, ko gaisma veic gada laikā, proti, aptuveni 9 460 000 000 000 000 000 000 000 (9 triljoni 460 miljardi) kilometru.
Visjaudīgākā laika mašīna mūsdienās ir amerikāņu kosmiskais teleskops «Hubble», kas jau 20 gadus atrodas Zemes orbītā. Šī teleskopa optiskās acis ir ārkārtīgi asas. Tās redz gandrīz desmit reižu labāk nekā tā kolēģi uz Zemes. Kāpēc, jūs varētu jautāt? Tas ir tāpēc, ka mūsu Zemi ieskauj atmosfēra, gaiss, ko mēs elpojam. Tā mums šķiet pilnīgi tukša un tāpēc caurspīdīga. Taču patiesībā tā tāda nav.
Gaiss un atmosfēra satur ļoti daudz dažādu vielu – skābekli, slāpekli, oglekļa dioksīdu, ūdens tvaiku un daudzas citas. Šīs vielas lidinās virs mums un ap mums kā atsevišķas molekulas. Un mēs jau zinām, ka atsevišķas molekulas mūsu acīm nav redzamas. Tāpēc mums šķiet, ka caurspīdīgs gaiss ir tikai tukšs gaiss. Taču gaisma ir ļoti jutīga pret vidi, caur kuru tā lido. Tāpat arī cilvēks: viena lieta ir skriet gar upes krastu, bet cita lieta ir skriet pa seklumu līdz jostasvietām ūdenī. Uzminiet, kurš skrien ātrāk? Zemes atmosfērā gaisma saduras ar neredzamām molekulām, izkliedējas un nedaudz palēninās. Tāpēc astrofiziķi un nolēma teleskopu novietot Zemes orbītā, pacelt virs atmosfēras, novietot to kosmosa vakuumā, kur vielu saturs ir niecīgs un tāpēc gaismai nav šķēršļu, nav traucējumu.
Astrofiziķu cerības piepildījās, un tagad mums ir superteleskops «Hubble», kas ķer tālās pagātnes gaismu un sūta uz Zemi fantastiska skaistuma attēlus no dažādiem Visuma nostūriem. Starp citu, arī jūs varat aplūkot šo skaistumu – internetā. Attēli ir pieejami ikvienam.
Spektrālās brilles
Bet kāpēc mums ir vajadzīga gaisma, ja vēlamies uzzināt, no kurienes viela nāk? Izrādās, ka gaisma var mums pateikt vairāk nekā tikai to, kā tā izskatās. Jebkurš spēcīgi sakarsēts ķermenis izstaro enerģiju. Uzkarsēta plīts izstaro siltumu, karstas ogles liesmo un mirgo sarkanā krāsā, bet vasaras saule apžilbina acis un apdedzina ādu. Tā ir visu vielu un to sastāvdaļu – atomu – īpašība sakarstot uzbudināties un izstarot enerģiju.
Ņemiet šķipsniņu parastās galda sāls uz naža gala (ķīmiķi šim nolūkam izmanto porcelāna karotīti) un ielieciet to atklātā ugunī. Sāli aptverošā liesma iekrāsosies spilgti dzeltenā krāsā. Tā ir gaisma, ko spēcīgi sakarsējot izstaro nātrija elementa atomi, no kuriem sastāv sāls. Savukārt, ja paņemsiet citu vielu, kas satur elementu kāliju, liesma būs zili violeta. Starp citu, šo vienkāršo metodi ķīmiķi joprojām izmanto, lai noteiktu konkrēta elementa klātbūtni nezināmā vielā vai vielu maisījumā. Un pirotehniķi – lai radītu daudzkrāsainas svētku uguņošanas ierīces.
Astrofiziķi, kas uztver tālās zvaigznes gaismu, var sadalīt to pa sastāvdaļām – to sauc par spektru. Arī daba to spēj. Jūs droši vien esat daudzkārt redzējuši, kā pēc lietusgāzes debesīs pēkšņi