Квантовые явления в системах сильной связи. Формула и применение. ИВВ

Квантовые явления в системах сильной связи. Формула и применение - ИВВ


Скачать книгу
этими уровнями приводят к испусканию или поглощению фотонов, что приводит к спектральным линиям.

      2. Молекулы: В молекулах энергетические уровни связаны с вращательными, колебательными и электронными состояниями. Переходы между этими уровнями могут приводить к изменению длины волны поглощенного или испущенного света.

      3. Квантовые ямы: В квантовых ямах энергетические уровни связаны с разрешенными энергетическими состояниями электронов в ограниченной области пространства. Изменение размеров квантовой ямы может приводить к изменению энергетических уровней и оптических свойств материала.

      Энергетические уровни играют важную роль в понимании и описании квантовых систем. Их изучение позволяет предсказывать поведение системы при различных условиях и разрабатывать новые квантовые технологии.

      Вероятности переходов между энергетическими уровнями

      Вероятности переходов между энергетическими уровнями в квантовых системах определяются правилами квантовой механики и зависят от различных факторов, включая выбранный метод возбуждения системы, её окружение и свойства переходящих состояний.

      Некоторые из основных моментов, определяющих вероятности переходов:

      1. Правила отбора:

      – Дипольные переходы: Вероятность переходов между энергетическими уровнями в атомах и молекулах обычно зависит от того, насколько сильно дипольный момент перехода соответствует поляризации электромагнитного поля во время излучения или поглощения.

      – Угловой момент: Переходы в атомах могут быть запрещены или разрешены в зависимости от изменения углового момента.

      2. Законы сохранения:

      – Сохранение энергии: Вероятность перехода между энергетическими уровнями связана с разностью энергии между начальным и конечным состояниями.

      – Сохранение импульса: Вероятность перехода также зависит от сохранения импульса системы.

      3. Окружение и внешние воздействия:

      – Взаимодействие с окружающей средой: Присутствие других частиц или полей может изменить вероятности переходов.

      – Интенсивность внешнего излучения: Излучение, возбуждающее систему, может повысить вероятность переходов.

      Примеры:

      – Спектральные линии: Вероятности переходов между энергетическими уровнями атомов и молекул определяют интенсивность и форму спектральных линий.

      – Флюоресценция и фотолюминесценция: Вероятности переходов в флуоресцирующих и фотолюминесцирующих материалах определяют скорость излучения света после возбуждения.

      Вероятности переходов между энергетическими уровнями являются фундаментальным аспектом квантовой механики и играют важную роль в понимании и интерпретации квантовых явлений. Их анализ позволяет предсказывать поведение квантовых систем и разрабатывать новые методы контроля и использования квантовых эффектов.

Скачать книгу