Сверточные нейросети. Джейд Картер
модель была способна обучаться и исследовать пространство параметров.
2. Обучение сети: В процессе обучения сети каждый вес настраивается с использованием алгоритма обратного распространения ошибки. Нейронная сеть предсказывает класс каждой цифры на основе входных изображений, а затем сравнивает эти предсказания с фактическими метками изображений. По мере обратного прохода через сеть вычисляются градиенты функции потерь по отношению к каждому весу.
3. Обновление весов: Веса обновляются в направлении, обратном градиенту функции потерь. Это означает, что веса, которые вносят больший вклад в ошибку модели, будут корректироваться сильнее. Процесс обновления весов повторяется для каждого примера из обучающего набора данных и повторяется многократно в течение нескольких эпох, пока модель не достигнет приемлемого уровня точности на валидационном наборе данных.
4. Результаты обучения: После завершения обучения весовые коэффициенты нейронной сети становятся оптимизированными для данной задачи. Теперь модель может принимать новые, ранее не виденные данные и делать предсказания с высокой точностью, распознавая рукописные цифры с высокой точностью.
Этот пример демонстрирует, как весовые коэффициенты нейронной сети настраиваются в процессе обучения, чтобы модель могла делать точные предсказания на основе входных данных.
Пример кода на Python с использованием библиотеки PyTorch для создания и обучения простой нейронной сети для классификации изображений рукописных цифр из набора данных MNIST:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# Загрузка данных MNIST и предобработка
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_set = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
# Определение архитектуры нейронной сети
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(28*28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
x = torch.flatten(x, 1)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# Создание экземпляра модели
model = SimpleNN()
# Определение функции потерь и оптимизатора
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Обучение модели
num_epochs = 5
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if (i+1) % 100 == 0:
print(f'Epoch {epoch+1}, Iteration {i+1}, Loss: {running_loss/100:.4f}')
running_loss = 0.0
print('Finished Training')
# Сохранение модели
torch.save(model.state_dict(), 'mnist_model.pth')
```
Этот код создает и обучает простую полносвязную нейронную сеть для классификации изображений MNIST. В ней используются три полносвязных слоя, функции активации ReLU и функция потерь CrossEntropyLoss. Модель обучается в течение