Это база: Зачем нужна математика в повседневной жизни. Иэн Стюарт
развития этой науки состоит в постановке задач перед математиками, которые будут изобретать способы их решения. В таких целенаправленных исследованиях нет ничего плохого, но они подобны драке одной рукой. История же раз за разом демонстрирует ценность второй руки – поразительные возможности человеческого воображения. Особую мощь математике придает сочетание двух способов мышления, которые дополняют друг друга.
Например, в 1736 году великий математик Леонард Эйлер обратился к забавной небольшой головоломке, связанной с кёнигсбергскими мостами. Он заинтересовался ею потому, что она, похоже, требовала геометрии нового типа, которая меняла обычные представления о длинах и углах. Но он никак не мог предвидеть, что в XXI веке предмет, начало которому положило его решение, поможет множеству пациентов найти почку для пересадки и тем самым сохранить жизнь. Для начала отметим, что даже идея пересадки почки показалась бы в то время чистой фантазией, а если и нет, то связь ее с той головоломкой точно выглядела бы нелепицей.
И кто мог бы вообразить, что открытие заполняющих пространство кривых – кривых, проходящих через каждую точку заполненного квадрата, – сможет помочь программе Meals on Wheels планировать маршруты доставки? Точно не математики, которые изучали эти вопросы в 1890-е годы и которых интересовало, как можно определить такие заумные концепции, как «непрерывность» и «измерение». Кстати, поначалу им пришлось объяснять, почему дорогие их сердцу математические представления могут оказаться ошибочными. Многие коллеги тогда осуждали все это мероприятие как ошибочное и вредное. Со временем все поняли, что бесполезно жить в блаженном неведении и считать, что все будет замечательно работать, если на самом деле не будет.
Не только математика прошлого используется таким образом. Методы трансплантации почки опираются на многочисленные современные расширения первоначального озарения Эйлера, к которым относятся, в частности, алгоритмы комбинаторной оптимизации, позволяющие делать наилучший выбор из громадного спектра возможностей. Среди множества математических методов, используемых в компьютерной анимации, немало таких, которым от роду насчитывается с десяток лет, а то и меньше. В качестве примера можно привести «пространство форм»[1] – пространство бесконечной размерности, состоящее из кривых, которые считаются одной и той же кривой, если различаются только координатами. С их помощью анимационные последовательности становятся более гладкими и естественными на вид. Вездесущая гомология – еще одно недавнее изобретение – появилась в результате того, что специалисты по чистой математике хотели вычислять сложные топологические инварианты, которые подсчитывают число многомерных отверстий в геометрических фигурах. Помимо прочего, их метод позволил сетям датчиков сигнализации обеспечивать полное покрытие территории при защите зданий или военных баз от вторжения. Абстрактные концепции из алгебраической геометрии – «суперсингулярные изогенные
1
Термин введен британским статистиком Дэвидом Кендаллом. Другое название – «пространство неряшливости» – используется специалистами по автоматическому распознаванию рукописного текста. –