Системная технология. Марат Телемтаев
в большинстве своем технологические системные процессы по замыслу строятся, как процессы поочередного достижения цели систем «по частям». Например, по отдельности изготавливаются детали и блоки прибора. Соединение их в прибор, т.е. в систему-изделие, приводит к достижению цели, которая не может быть описана, как математическая функция с аргументами в виде элементарных целей (с помощью «дерева целей», напр.) и описывается только понятием целого: свойства прибора, (достижение которых было целью данной технологии), как целого «больше», чем любая комбинация свойств частей прибора, как элементов целого.
Будем рассматривать только тот случай, когда все множества A∑, B∑,D∑, E∑, F∑, S∑ конечны. Пересечение каждой пары множеств А∑, В∑, D∑, Е∑, F∑, S∑ представляет собой конечное пустое множество.
Модель полной системы.
● Полной системой S назовем совокупность взаимосвязанных элементов a ∈ A, е ∈ Е (A ⊆ A∑, , E ⊆ E∑) и осуществляемых ими элементарных процессов в ∈ В, d ∈ D (B ⊆ В∑ D ⊆ D∑), предназначенную для достижения цели F, связанной с выпуском определенного изделия (продукта) SF, SF ⊆ SF∑, F ⊆ F∑.
Модель полной системы (математическую модель полной системы) S определим, как конечную алгебраическую систему
S= < { A, В, D, Е }, W, Φ >, (3.3.1)
состоящую из множества-носителя {А, B, D, Е}, множества операций W={W1, W2, …, Wl } и множества предикатов Φ={Φ1, Φ2, …, Φr}.
Для описания всех необходимых взаимосвязей в модели системы (3.3.1) используем два множества: W∑ и Φ∑. Множество W∑ является множеством всех операций, используемых при анализе и синтезе всех моделей S из множества S∑. Множество операций W используется для определенной модели S. Множество S∑ – это множество моделей системы S, причем каждая модель S отражает одну технологию изготовления одного изделия, выпуска одного продукта (или его модификации). Множество W∑ может содержать теоретико-множественные операции объединения, пересечения и другие.
Множество Φ∑ содержит предикаты, используемые для описания отношений на множествах-носителях всех моделей системы. Множество главных предикатов Φ содержит предикаты Φ1-Φr, определяющие отношения связи на {A, В, D, E}, которые должны соответствовать цели F изготовления «изделия SF», F ⊆ F∑, SF ⊆ SF∑ . Переход от модели системы S для одной технологии изготовления изделия к модели другой технологии осуществляется путем замены одной совокупности A,B,D,E,W,Φ на другую. Используя эти совокупности для технологий изготовления всех изделий, можно составить множество S∑ всех моделей S данной системы, S ⊆ S∑..
* В модели (3.3.1) для конкретной реализации системы S, значение предиката Φj ⊂ Φ равно 1 (истинно), если взаимосвязи между элементами множества-носителя соответствуют выбранной технологии изготовления изделия. Множество главных предикатов Φ описывает взаимосвязи, необходимые для конкретной реализации S. Минимально необходим,