Искусственный интеллект в государственном и муниципальном управлении. Учебное пособие. Елена Шевалдина
ресурсов и улучшать качество медицинской помощи. Первой в России системой искусственного интеллекта, зарегистрированной Росздравнадзором как программное медицинское изделие, стала платформа прогнозной аналитики и управления рисками в здравоохранении под названием Webiomed [16].
Искусственный интеллект может анализировать данные об учащихся, преподавателях и учебных заведениях, чтобы предсказать потребность в образовательных ресурсах (например, учебные материалы, оборудование, здания), это помогает органам образования планировать развитие образовательной системы и обеспечивать её эффективность. Один из примеров ИИ-системы прогнозирования потребности в учителях в России – платформа Analytics & Insights. Её разработала компания PowerSchool. Платформа помогает отслеживать динамику по разным показателям и составлять аналитические дашборды и прогнозы, исходя из имеющихся данных. Она анализирует успеваемость и посещаемость учеников, а также на основе этих данных составляет прогнозы о перспективах поступления в вуз или, наоборот, не окончить школу вовремя из-за плохих показателей. Руководители учебных заведений могут увидеть информацию не только по отдельным классам, но также по всей образовательной организации и школьному округу. Помимо данных, доступных педагогам, администрация может получить прогноз о будущем числе первоклассников, а также анализировать потребность в кадрах [131].
ИИ может также анализировать данные о социальных потребностях населения (например, потребность в жилье, питании, одежде), чтобы предсказать необходимость в социальных услугах и ресурсах. Так, например, для логичного размещения ритейлерами своих предприятий оффлайн торговли российскими разработчиками выводится на рынок ИИ-продукт под названием GeoSurf, задачами которого является сбор картографических данных об организациях, их анализ и геоаналитика. Также потенциальными клиентами могут быть застройщики (предсказание наиболее перспективных мест и цен для новых домов) и госорганизации (размещение социальных объектов). Модель будет обрабатывать данные компании-клиентов, в том числе данные о выручке и геоданные для существующих точек компании из открытых источников. На этих данных сервис на основе искусственного интеллекта будет подчёркивать нужные зависимости, на основании которых затем алгоритмом будет предлагаться размещение новых локаций [103].
3.2. Прогнозирование развития туристической сферы. Туристическое направление – еще одна сфера, где ИИ и большие данные могут привести к значимым результатам. Это позволяет не только улучшать туристическую инфраструктуру, но и понимать, какие объекты привлекают отечественных туристов, а какие – зарубежных. Так, эффективно применять данные аналитики можно на уровне местных администраций и туристских информационных центров. К примеру, геоаналитика туристического потока поможет властям спланировать, где требуется развивать туристическую инфраструктуру,