Все науки. №8, 2024. Международный научный журнал. Ибратжон Хатамович Алиев

Все науки. №8, 2024. Международный научный журнал - Ибратжон Хатамович Алиев


Скачать книгу
сформированного прямоугольника SABCD вычисляется исходя из разности угловых координат. Так, при рассмотрении с точки зрения сечения и имеющихся координат всех 4 точек -, в силу равности радиусов могут быть преобразованы, как. Ещё одним аспектом рассмотрения с точки зрения сечения, является возможность определения длины отрезка между двумя координатами, при условии угла между двумя радиусами, соединённые дугой, между точками A и B, из свойства косинусов в треугольнике AOB (6).

      Для вычисления площади дуг важно обратить внимание на то, что высота дуги прямоугольника на проекции равна высоте дуги на сечении, следовательно, вычисление сегмента окружности в проекции равна площади сегмента проекции прямоугольника на плоскость. Поскольку длина отрезка, на которую опираются линии радиусов, формирующие дугу известна в качестве стороны прямоугольника, для вычисления площади сегмента достаточно использование формулы площади сегмента (8).

      Исходя из этого общая формула площади составляет (9).

      В результате подстановки полученных выражений площади в выражение скорости в (5), получается полная формула скорости (10).

      Последней стадией подстановки получается выведение значения выражения кинетической энергии, генерируемая посредством использования ветряных генераторов (11).

      В результате была получена единая функция, зависимая от нескольких переменных, позволяющая моделировать значения образуемых мощностей ветра.

      Расчёты. Для создания графика таковой функции необходимо использование несколько стадий ведения подсчёта. Величина детектируемых площадей на единицу дольной части остаётся константой, на основе чего определяется детектируемая площадь, при расчёте относительно всей планеты Земля равна 4 179,005 км2, формируя мнимый прямоугольник со стороной в 64,64522 км (эти данные определены исходя из минимальных возможностей расчёта). Следующей величиной являются значения функции энергии первой и второй стадии, отличающиеся разностью вводящихся значений углов при выбранном времени (Рис. 1—2).

      Рис. 1. График мощности в трёхмерных координатах в первой точке выбора

      Рис. 2. График мощности в трёхмерных координатах во второй точке выбора

      Полученные графики указывают на периодические полосы изменения мощности по Земляным координатам. Предполагается, что периодичность линий мощности связаны с изменениями дня и ночи в выбранных точках расчёта. На основе полученных данных по определению мощности, можно образовать график изменения скорости ветра по Земляным координатам для указанных точек расчёта (Рис. 3).

      Рис. 3. График скорости ветра в трёхмерном пространстве

      Полученные результаты теоретического расчёта коррелируются с реальным


Скачать книгу