История западной философии. Бертран Рассел

История западной философии - Бертран Рассел


Скачать книгу
места в платоновских диалогах показывают, что в его время была принята независимая от арифметики трактовка геометрии; этот принцип получил свое завершение у Евклида. В книге II Евклид доказывает геометрически многое из того, что для нас естественнее было бы доказывать алгебраически, например, что (а + b)² = а² + 2аb + b². Евклид счел этот способ необходимым именно благодаря трудностям, связанным с несоизмеримостью величин. То же самое наблюдается и в толковании Евклидом пропорции в книгах V и VI. Вся система Евклида превосходна в логическом отношении, и она предвосхитила математическую строгость выводов математиков XIX века. Поскольку адекватной арифметической теории несоизмеримых величин не существовало, метод Евклида был наилучшим из возможных в геометрии методов. Когда Декарт ввел координаты в геометрию, снова вернув тем самым арифметике верховенство, он сделал предположение, что разрешение проблемы несоизмеримости вполне возможно, хотя в его время такое решение еще не было найдено.

      Влияние геометрии на философию и научный метод было глубоким. Геометрия в таком виде, в каком она установилась у греков, отправляется от аксиом, которые являются самоочевидными (или полагаются таковыми), и через дедуктивные рассуждения приходит к теоремам, которые весьма далеки от самоочевидности. При этом утверждают, что аксиомы и теоремы являются истинными применительно к действительному пространству, которое является чем-то данным в опыте. Поэтому кажется возможным, используя дедукцию, совершать открытия, относящиеся к действительному миру, исходя из того, что является самоочевидным. Подобная точка зрения оказала влияние как на Платона и Канта, так и на многих других философов, стоявших между ними. Когда Декларация независимости говорит: «Мы утверждаем, что эти истины самоочевидны», – она следует образцу Евклида. Распространенная в XVIII веке доктрина о естественных правах человека является поиском евклидовых аксиом в области политики[33].

      Форма ньютоновского произведения «Начала», несмотря на его общепризнанный эмпирический материал, целиком определяется влиянием Евклида. Теология в своих наиболее точных схоластических формах обязана своим стилем тому же источнику. Личная религия ведет свое начало от экстаза, теология – из математики; и то и другое можно найти у Пифагора.

      Я полагаю, что математика является главным источником веры в вечную и точную истину, как и в сверхчувственный интеллигибельный мир. Геометрия имеет дело с точными окружностями, но ни один чувственный объект не является точно круглым; и как бы мы тщательно ни применяли наш циркуль, окружности всегда будут до некоторой степени несовершенными и неправильными. Это наталкивает на предположение, что всякое точное размышление имеет дело с идеалом, противостоящим чувственным объектам. Естественно сделать еще один шаг вперед и доказывать, что мысль благороднее чувства, а объекты мысли более реальны, чем объекты чувственного восприятия. Мистические доктрины по поводу соотношения времени и вечности также получают поддержку от чистой


Скачать книгу

<p>33</p>

Джефферсоновское «священное и неотъемлемое» было заменено Франклином на «самоочевидное».