Нетрадиционные углеводородные источники: новые технологии их разработки. Монография. Ефим Вульфович Крейнин

Нетрадиционные углеводородные источники: новые технологии их разработки. Монография - Ефим Вульфович Крейнин


Скачать книгу
значения. Расстояние до контура питания измеряется сотнями метров. Если пробурить скважину вблизи места скопления метана или трещиноватой зоны, то есть уменьшить расстояние до контура питания в сотни раз, то можно существенно увеличить приток метана в канал. Особое значение имеет величина газопроницаемости угольного пласта, измеряемая на глубине 1000 м всего 0,01–0,001 мД. Поэтому любые методы увеличения газопроницаемости угольного пласта заслуживают пристального внимания.

      Однако новая предлагаемая технология позволяет более эффективно использовать такие буровые каналы. Для этого необходимо расширять их путем перемещения очага горения навстречу нагнетаемому в канал воздушному дутью [42].

      На рис. 9 представлена принципиальная схема модуля, состоящего из двух скважин.

      

      Рис. 9 – Принципиальная схема модуля использования протяженных буровых каналов для интенсифицированного извлечения метана: а – горизонтальный угольный пласт; б – наклонный угольный пласт; 1 – угольный пласт; 2 – дутьевая скважина; 3 – буровой канал; 4 – газоотводящая скважина

      На угольный пласт 1, подлежащий дегазации, бурят вертикально- (наклонно-) горизонтальные (наклонные) скважины 2. Необсаженная часть этих скважин 3 может быть выполнена горизонтальной или наклонной. На дальний конец бурового канала 3 бурят вертикальную скважину 4. Скважину 4 соединяют с буровым каналом 3 методом гидроразрыва, после этого в первой из них разжигают угольный пласт. В скважину 2 нагнетают воздушное дутье, а скважину 4 открывают в атмосферу. Очаг горения начинает перемещаться по буровому каналу 3 навстречу нагнетаемому в скважину 2 дутью.

      На рис. 10 представлен метод контроля над положением фронта горения вдоль канала. В процессе огневой проработки угольного канала фиксируют величину его гидравлического сопротивления ΔР.

      

      Рис. 10 – Изменение гидравлического сопротивления расширяемого бурового канала во времени

      В процессе перемещения очага горения между двумя скважинами (в течение трех суток) наблюдалось непрерывное снижение гидравлического сопротивления канала (как разности гидравлических сопротивлений дутьевой и газоотводящей скважин) с 0,35 до 0,05 МПа.

      В патенте [43] не только обосновывается способ огневого расширения бурового канала, но и отмечается экстремальный характер зависимости скорости перемещения от расхода нагнетаемого воздушного дутья. Вследствие этого одна и та же скорость перемещения очага горения может быть получена на меньшем расходе воздуха (восходящая кривая зависимости) и на большем (нисходящая кривая).

      Соответственно, во втором случае диаметр расширенного канала будет больше. Предположительно диаметр проработанного канала может колебаться от 0,5 до 1,0 м.

      Коллектор, созданный таким образом, характеризуется высокой дренирующей способностью, а следовательно, потенциально повышенной метаноотдачей.

      Такой искусственно созданный коллектор, стенки которого испещрены многочисленными глубокими (в соответствии с глубиной прогрева угольного


Скачать книгу